A machine learning framework predicting pump powers and noise figure profile for a target distributed Raman amplifier gain profile is experimentally demonstrated. We employ a single-layer neural network to learn the mapping from the gain profiles to the pump powers and noise figures. The obtained results show highly accurate gain profile designs and noise figure predictions, with a maximum error on average of ∼ 0.3 dB. This framework provides a comprehensive characterization of the Raman amplifier and thus is a valuable tool for predicting the performance of next-generation optical communication systems, expected to employ Raman amplification.
Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning / de Moura, U. C.; Rosa Brusin, A. M.; Carena, A.; Zibar, D.; da Ros, F.. - In: OPTICS LETTERS. - ISSN 0146-9592. - ELETTRONICO. - 46:5(2021), pp. 1157-1160. [10.1364/OL.417243]
Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning
Rosa Brusin A. M.;Carena A.;
2021
Abstract
A machine learning framework predicting pump powers and noise figure profile for a target distributed Raman amplifier gain profile is experimentally demonstrated. We employ a single-layer neural network to learn the mapping from the gain profiles to the pump powers and noise figures. The obtained results show highly accurate gain profile designs and noise figure predictions, with a maximum error on average of ∼ 0.3 dB. This framework provides a comprehensive characterization of the Raman amplifier and thus is a valuable tool for predicting the performance of next-generation optical communication systems, expected to employ Raman amplification.File | Dimensione | Formato | |
---|---|---|---|
OpticsLetters2021_RamanDesign_NF.pdf
Open Access dal 02/03/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
449.02 kB
Formato
Adobe PDF
|
449.02 kB | Adobe PDF | Visualizza/Apri |
ol-46-5-1157.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2902912