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A machine learning framework predicting pump pow-
ers and noise figure profile for a target distributed Ra-
man amplifier gain profile is experimentally demon-
strated. We employ a single-layer neural network
to learn the mapping from the gain profiles to the
pump powers and noise figures. The obtained results
show highly-accurate gain profile designs and noise fig-
ure predictions, with a maximum error on average of
∼0.3 dB. This framework provides the comprehensive
characterization of the Raman amplifier and thus is a
valuable tool for predicting the performance of the next-
generation optical communication systems, expected to
employ Raman amplification. © 2021 Optical Society of Amer-

ica

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Power efficient erbium-doped fiber amplifiers (EDFAs), conve-
niently amplifying the C-band, have been applied to optical
communication system for more than 25 years . However, their
limited and fixed bandwidth operation and noise figures (NFs)
higher than 3 dB, make them less attractive to the new generation
of high order modulation formats and ultra-wideband transmis-
sions [1]. These limitations have provided renewed interest on
the research of Raman amplifiers (RAs) due to three reasons [2].
First, RAs can operate as distributed amplifiers, using the trans-
mission fiber as the gain medium, thus potentially improving
the signal-to-noise ratio (SNR) and consequently reducing the
effective NF [3]. Second, they can provide gain at any wave-
length, by properly selecting the pump laser frequency. Third,
they can broaden the amplified bandwidth when operating in a
multi-pump configuration.

Unlike for lumped EDFA-based amplification, in distributed
RA the fiber loss is partially counterbalanced by the distributed
gain. Therefore, the signal power levels (and consequently
the SNR levels) along the transmission fiber can be potentially
higher for systems employing distributed rather than lumped

amplification [3]. Assuming an operation in the linear transmis-
sion regime, an increase in SNR will directly lead to an increase
in the spectral efficiency–transmission distance product. Besides
providing an increase in the SNR, a key additional advantage of
Raman amplifiers is the ability to provide arbitrary gain profiles
by adjusting the pump lasers’ powers and frequencies. This
additional flexibility has a wide–range of potential applications
such as: complementing the gain of non–flat amplifiers like
EDFAs [4], flattening of frequency combs, and maximizing the
throughput in ultra-wideband systems by spectral shaping [1].

Providing an arbitrary gain profile, in a controlled way, re-
quires selecting the appropriate pump powers and frequencies.
We have introduced and experimentally validated a machine
learning (ML) framework for determining the corresponding
pump powers and frequencies, given a target gain profile [5–7].
This proved to be a versatile tool, able to rapidly provide highly-
accurate gain designs for different amplifier schemes such as
C [7], C+L [5], and S+C+L-band amplifiers [6], for discrete and
distributed configurations. Similar methods were also used to
design the RA in hybrid approaches with EDFA [4] or semicon-
ductor optical amplifier (SOA) [8], and few-mode RA [9].

So far, the focus has only been on the design of target gain
profiles without consider the noise properties [4–9]. However,
different pump configurations in terms of frequency and power
can affect both the signal and the noise power spectral densities
during the Raman amplification. Consequently, the flexibility
to tune the gain profile by means of pump configuration ad-
justments can cause undesirable changes in the SNR of the am-
plified signal, greatly affecting the overall signal transmission
performance. Therefore, when designing or adjusting the RA to
provide a target gain profile, it is crucial to evaluate the resulting
noise profile.

In this work, the ML framework, based on neural networks
(NNs) and presented in [5], is upgraded to incorporate simul-
taneous prediction of pump powers and NF for a target gain
profile. This new framework is now a comprehensive RA inverse
design tool, able not only to provide the desired gain profile,
but also its noise performance. The experimental validation for
a C-band distributed RA with 4 pumps and 100-km standard
single mode fiber demonstrates that the framework can provide

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. Upgraded neural network models (with respect to [5])
for the (a) inverse (NNinv) and (b) forward (NN f wd) Raman
amplifier mappings incorporating the noise figure prediction.
(c) Full machine learning framework with the gradient descent
(GD) routine used to fine–optimize the NNinv P predictions.

highly–accurately designs of 3500 arbitrary gain profiles, in a
controlled way, and predict the corresponding noise figure with
an average maximum error of ∼0.3 dB.

2. INVERSE DESIGN WITH NOISE FIGURE PREDICTION

In general, the pump power configuration defines the gain and
the NF of a Raman amplifier. Therefore, the forward mapping
of the RA can be described by [G, NF] = f (P), where f (·) is
a differential equation operator [3]. G = [G1, G2, ..., GN ]T and
NF = [NF1, NF2, ..., NFN ]T are discretized Raman gain and NF
profiles over N frequency channels. P = [P1, P2, ..., Pn]T is the
vector of pump power levels for n pumps.

To be able to simultaneously predict the pump power config-
uration and the NF for a target gain profile, we train an NN to
learn the mapping between G and [P, NF]. This NN is referred
to as NNinv and is illustrated in Fig. 1(a). The sub-index inv
refers to the inverse design provided by NNinv, rather than the
RA inverse mapping f−1(·). The RA input power is not consid-
ered as the robustness of the ML framework for different input
signal power is discussed in [7].

The prediction accuracy of the NNinv can be improved by
employing a fine–optimization technique presented in [5]. For
that, a second ANN, referred to as NN f wd, is employed to ap-
proximate the forward mapping f (·) as is illustrated in Fig. 1(b).
The fine–optimization is illustrated in Fig. 1(c). It is based on
a gradient descent (GD) routine that aims at finding the pump
configuration that minimizes the mean squared error (MSE)
between target and predicted gain profiles. The initial pump
configuration is the one provided by NNinv. Therefore, the GD
algorithm requires only a few iterations to converge (around 37
on average) as the NNinv prediction is already quite accurate.
Since the NNinv prediction takes only a few milliseconds, the
total prediction time is defined by the fine optimization, being
around 0.4 s on average (considering a standard computer setup,
i.e., Intel(R) i7-8650U @1.90GHz, 16.0G RAM). During the GD
iterations, NN f wd is used to provide fast gain predictions and
gradient calculations for the gain MSE since it is fully differen-
tiable. Note that the NF prediction is not optimized during the
GD procedure. After the fine–optimization, NN f wd is applied
one last time to compute an updated NF prediction considering
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Fig. 2. Experimental setup for data–set generation showing
an input and an output spectra to the Raman amplifier. The
spectra are measured with the resolution bandwidth of 0.1 nm.

the optimized pump power configuration as input.
Together with the optional fine–optimization step, NNinv

comprises a comprehensive RA inverse design tool able to si-
multaneously provide pump powers and NF predictions for a
given target gain profile GT, as illustrated in Fig. 1(c).

3. EXPERIMENTAL SETUP AND ANN TRAINING

Fig. 2 shows the experimental setup used to generate the train-
ing and testing data–sets. It employs a distributed RA in a
counter-propagating multi-pump configuration. The input sig-
nal is composed of N = 40 continuous wave (CW) lasers, 100-
GHz spaced on the ITU-T grid ranging from 192 to 196 THz. A
wavelength selective switch (WSS) is used to flatten the input
channels. The resulting spectrum at the input of the 100-km
standard single-mode fiber (SSMF) is shown in Fig. 2(I), where
the ratio between the signal and noise power is highlighted. At
the SSMF output, a commercial Raman amplifier pump mod-
ule is used. It has n = 4 pump lasers with fixed wavelengths
λ = [1454.4, 1444.8, 1434.4, 1423.4] nm and adjustable powers
for up to PMAX = [145, 158.5, 180, 152.5] mW. The pumps are
combined through a wavelength division multiplexing (WDM)
coupler and an optical spectrum analyzer (OSA) captures the
spectra after the RA.

The experimental data-set is generated as follows: M = 7000
different pump power vectors P drawn from uniform distribu-
tions are applied to the experimental setup in Fig 2 and their
respective output power spectra are measured. In this work,
we consider the Raman on-off gain Gon−off calculated as the
difference between the channel powers with the pumps turned
on and off. The high input signals’ OSNR levels (Fig 2(I)) al-
low to consider the inputs nearly shot-noise-limited signals [10].
Therefore, the associated NF can be calculated using the mea-
sured amplified spontaneous emission (ASE) spectral density
and the signal gain [10]. Here, the effective NF (NFeff), i.e.
based on Gon−off, is considered [3]. The data-set is given by
DM×(n+2N) = {Xi, Yi|i = 1, ..., M} with X = P and Y =
[Gon−off; NFeff] for NN f wd, and X = Gon−off and Y = [P; NFeff]
for NNinv. D is split into two equally-sized subsets: D1 (train-
ing+validation) and D2 (testing). The measurement errors for
NFeff and Gon−off estimation are below 0.1 dB.

NNinv and NN f wd are single–layer and fully connected NNs
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Fig. 3. Probability density function (PDF) of the maximum
error (EMAX) between (a) target and measured gains (from
predicted pump powers) and (b) predicted and measured
effective noise figure over the final test data-set D2, showing
mean (µ) and standard deviation (σ) values for the inverse
designs (NNinv) and fine–optimizations (NNinv + NN f wd).

trained using random projection method [11]. The model selec-
tion considered 10-fold cross-validation with 90% of D1 used for
training and 10% for validation. It was used to obtain the fol-
lowing parameters: the standard deviation (σWHL ) of the normal
distribution for the hidden layer’s (WHL) weights assignment,
the regularization parameter (λ) for the regularized least squared
error to calculate the output layer’s weights (Wout), the number
of hidden nodes (NHN), and the hidden node activation function
( fact). This process results in σ = 0.1, NHN = 1000 and fact(x)
= sin(x) for both NNs; and λ = 10−8 and 10−2 for NNinv and
NN f wd, respectively. A linear activation function is considered
for the output nodes ( fact(x) = x) and model averaging with
20 NNs is employed just for the inverse model to make it less
affected by the random WHL assignment. These NNs are trained
in parallel, not significantly increasing the training complexity
and time.

4. EXPERIMENTAL VALIDATION RESULTS

The accuracy of the framework to achieve the target gain profile
and predict NFeff is evaluated for: arbitrary gain profiles directly
selected from the test data-setD2 and known to be achievable by
the specific RA implementation, and flat gain profiles not part
of the testing data-set.

For the first test scenario, the NNinv is used to obtain the
pump powers for 3500 arbitrary target gain profiles within the
range 0 to 13.5 dB and estimate their respective NFeff. The corre-
sponding pump powers returned by NNinv are then applied on
the experimental setup (Fig. 2) and new measurements are per-
formed. The measured Gon−off profiles are then compared to the
target Gon−off whereas the NFeff measurements are compared
with the predicted NFeff returned by NNinv. These comparisons
are performed by computing the maximum absolute error EMAX
over frequencies. The fine–optimization is also evaluated in a
similar way. But in this case, measured NFeff are compared with
updated NFeff predictions returned by NN f wd, considering the
fine optimized pump powers as input.

Fig. 3 shows the probability density function (PDF) of EMAX
for the gain designs and the NFeff predictions. By just ap-
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Fig. 4. (a) On-off gain and (b) effective noise figure spectral
profiles for the worst case inverse design (NNinv) and its corre-
sponding fine–optimization (NNinv + NN f wd).

plying NNinv (red dashed lines), similar performances are
achieved for both Gon−off design and NFeff prediction in terms
of EMAX mean µ and standard deviation σ values. If the fine–
optimization, referred to as NNinv+NN f wd (blue solid lines), is
considered, no improvement is observed for the gain design
EMAX µ and σ. However, for the target gain case with the worst
NNinv performance, the EMAX is reduced from ∼1.5 to ∼0.5 dB
(point 1 to 2 in Fig. 3(a)). The overall worst performance for
NNinv+NN f wd is now ∼0.75 dB. Moreover, the number of cases
with EMAX lower than 0.5 dB increases from 94 to 98% when
fine optimizing the pump powers. For the NFeff predictions,
both average and maximum EMAX values are improved after the
fine–optimization, with the number of cases with EMAX lower
than 0.5 dB increasing from 96 to 99.9%, as shown in Fig. 3(b).
However, the NNinv performance in predicting NF is still accu-
rate, allowing an ultra fast pump and noise figure prediction for
most cases where the inverse model alone is sufficient to provide
accurate gain designs.

Fig. 4(a) shows the target gain profile corresponding to the
worst case (maximum EMAX) when applying NNinv. The mea-
sured on–off gain profiles for the design (NNinv) and fine–
optimization (NNinv + NNinv) are also shown. They correspond
to points 1 and 2 in Fig. 3(a), respectively. The fine–optimization
provides a gain profile significantly closer to the target gain,
corresponding to ∼1 dB EMAX reduction when compared to the
NNinv measured gain curve.

The worst NNinv gain design case also presents a high NFeff
prediction error (slightly lower than the worst NFeff predic-
tion), as indicated by point 1 in Fig. 3(b). Fig. 4(b) shows the
corresponding NNinv NFeff prediction (gray dashed line) and
measurement (red dashed line with empty circles). After fine–
optimization, the updated NFeff prediction (gray solid line),
obtained by considering the optimized pump power values at
the NN f wd input, and the new NFeff measurement (blue solid
line with circles) are closer to each other. This shows that the
fine–optimization also improves the NFeff prediction.

As second test scenario, we investigated the design of flat
gain profiles and their respective NFeff estimation. This analysis
considers four flat target gains, from 1 to 4 dB. Flat gains higher



Letter Optics Letters 4

(a)

(b)

(c)

Pred., NNfwd
Meas.

NNinv

NNinv +NNfwd

Gain design

NNinv NNfwd

NFeff prediction

Target Meas., NNinv Meas., NNinv + NNfwd

Fig. 5. (a) Maximum errors (EMAX) for the gain designs and
the effective noise figure predictions for different target on–off
gain cases. The gain designs consider NNinv (inverse design)
and NNinv + NN f wd (fine–optimization), whereas NFeff is pre-
dicted by NNinv (inverse design) and updated by NN f wd (after
fine optimize the gain design). Comparing the profiles for (b)
on–off gain (target and measured) and (c) NFeff (predicted and
measured), the latter considering only NN f wd prediction.

than 4 dB cannot be achieved due to pump power limitations for
the considered setup [7]. The same validation procedure carried
for the arbitrary gains was performed for the design (NNinv)
and fine–optimization (NNinv + NN f wd). The obtained results
are shown in Fig. 5. Fig. 5(a) shows EMAX as a function of the
evaluated target gain for the gain designs and NFeff predictions.
The gain design accuracy using NNinv decreases with the target
gain. The fine–optimization reduces the gain design EMAX ,
keeping it <0.3 dB for all evaluated target gains. The NFeff
prediction performance is almost constant over the evaluated
gain, with no improvements after fine optimizing the pumps
and considering the new NN f wd NFeff predictions.

This is the opposite behavior observed for the arbitrary gains.
For the flat gains, the gain design accuracy is improved by the
fine–optimization, while the NFeff prediction does not change
significantly. However, notice that the worse performance in
achieving flat gains is ∼0.5 dB. This value is already accurate
in terms of gain design. Therefore, since target and measured
gains are close to each other for NNinv and NNinv + NN f wd, the
NFeff predictions will also be similar.

Fig. 5(b) shows targeted and predicted flat gain profiles. For
the flat gain profile design, the fine–optimization reduces the
gain mismatch especially for higher frequencies and gains. The
NFeff profiles are shown in Fig. 5(c), where just NN f wd predic-

tions and the measurements with finely optimized pumps are
shown. The fine–optimization has a better NFeff prediction per-
formance for higher frequency channels since it reduces the gain
mismatches between targets and measurements in this region.
The errors in the low-frequency region are related to the channel
gain variations. Comparing Fig. 5 (b) and (c), notice how chang-
ing the average gain of the amplifier can significantly affect the
NFeff. This demonstrates how important it is to properly iden-
tify these NFeff changes and their consequences on the overall
signal performance before applying any RA gain adjustments.

5. CONCLUSIONS

We present and experimentally validate a comprehensive ma-
chine learning framework that offers a comprehensive design
and performance characterization tool for the Raman amplifier.
The framework provides accurate pump power configuration
and noise figure predictions, both with 0.3 dB of averaged maxi-
mum error over more than 3500 target gains profiles, including
flat and arbitrary shapes. The ability to shape the gain profiles
is an effective way to compensate for wavelength-dependent
gain/loss in optical communication systems. Therefore, accurate
prediction of the impact of such gain profile adjustments on the
noise performance of the optical amplifier is critical to ensure
reliable transmissions in future high-capacity optical networks.
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