In this paper, the performance of four machine learning regressions like Support Vector Machine (SVM), Least Square-Support Vector Machine (LS-SVM), Gaussian Process Regression (GPR) and Random Forest method (RF) are investigated by means of an illustrative example referring to the characteristic impedance of a microstrip line in terms of electrical and geometrical parameters. The required dataset for training is obtained from a set of parametric electromagnetic simulations. The performance comparison of the four methods is done in the presence and absence of numerical noise and inaccuracies affecting the training samples. The results of our comparison provide a guidance for the proper method selection to model the electromagnetic characteristics of interconnects for high-speed signals: advantages and drawbacks of each of the proposed techniques clearly emerge from this analysis.
Application of Different Learning Methods for the Modelling of Microstrip Characteristics / Soleimani, N.; Trinchero, R.; Canavero, F.. - 2020-:(2020), pp. 1-3. (Intervento presentato al convegno 2020 IEEE Electrical Design of Advanced Packaging and Systems, EDAPS 2020 tenutosi a chn nel 2020) [10.1109/EDAPS50281.2020.9312887].
Application of Different Learning Methods for the Modelling of Microstrip Characteristics
Soleimani N.;Trinchero R.;Canavero F.
2020
Abstract
In this paper, the performance of four machine learning regressions like Support Vector Machine (SVM), Least Square-Support Vector Machine (LS-SVM), Gaussian Process Regression (GPR) and Random Forest method (RF) are investigated by means of an illustrative example referring to the characteristic impedance of a microstrip line in terms of electrical and geometrical parameters. The required dataset for training is obtained from a set of parametric electromagnetic simulations. The performance comparison of the four methods is done in the presence and absence of numerical noise and inaccuracies affecting the training samples. The results of our comparison provide a guidance for the proper method selection to model the electromagnetic characteristics of interconnects for high-speed signals: advantages and drawbacks of each of the proposed techniques clearly emerge from this analysis.| File | Dimensione | Formato | |
|---|---|---|---|
| EDAPS20_Soleimani.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										568.45 kB
									 
										Formato
										Adobe PDF
									 | 568.45 kB | Adobe PDF | Visualizza/Apri | 
| 09312887.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.05 MB
									 
										Formato
										Adobe PDF
									 | 1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2896274
			
		
	
	
	
			      	