We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E^2VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.

Lowest order stabilization free Virtual Element Method for the Poisson equation / Berrone, Stefano; Borio, Andrea; Marcon, Francesca. - ELETTRONICO. - (2021).

Lowest order stabilization free Virtual Element Method for the Poisson equation

Berrone, Stefano;Borio, Andrea;Marcon, Francesca
2021

Abstract

We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E^2VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.
2021
File in questo prodotto:
File Dimensione Formato  
E2VEM.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Creative commons
Dimensione 420.4 kB
Formato Adobe PDF
420.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2881864