We analyze the first order Enlarged Enhancement Virtual Element Method (E2VEM) for the Poisson problem. The method allows the definition of bilinear forms that do not require a stabilization term, thanks to the exploitation of higher order polynomial projections that are made computable by suitably enlarging the enhancement property (from which comes the prefix E2) of local virtual spaces. We provide a sufficient condition for the well-posedness and optimal order a priori error estimates. We present numerical tests on convex and non-convex polygonal meshes that confirm the robustness of the method and the theoretical convergence rates.

Lowest order stabilization free virtual element method for the 2D Poisson equation / Berrone, Stefano; Borio, Andrea; Marcon, Francesca. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 1873-7668. - ELETTRONICO. - 177:(2025), pp. 78-99. [10.1016/j.camwa.2024.11.017]

Lowest order stabilization free virtual element method for the 2D Poisson equation

Berrone, Stefano;Borio, Andrea;Marcon, Francesca
2025

Abstract

We analyze the first order Enlarged Enhancement Virtual Element Method (E2VEM) for the Poisson problem. The method allows the definition of bilinear forms that do not require a stabilization term, thanks to the exploitation of higher order polynomial projections that are made computable by suitably enlarging the enhancement property (from which comes the prefix E2) of local virtual spaces. We provide a sufficient condition for the well-posedness and optimal order a priori error estimates. We present numerical tests on convex and non-convex polygonal meshes that confirm the robustness of the method and the theoretical convergence rates.
File in questo prodotto:
File Dimensione Formato  
VersionePubblicata.pdf

accesso aperto

Descrizione: Published version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri
CAMWA_E2VEM.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 638.39 kB
Formato Adobe PDF
638.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2881864