We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E^2VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.
Lowest order stabilization free Virtual Element Method for the Poisson equation / Berrone, Stefano; Borio, Andrea; Marcon, Francesca. - ELETTRONICO. - (2021).
Lowest order stabilization free Virtual Element Method for the Poisson equation
Berrone, Stefano;Borio, Andrea;Marcon, Francesca
2021
Abstract
We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E^2VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
E2VEM.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Creative commons
Dimensione
420.4 kB
Formato
Adobe PDF
|
420.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2881864