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Lowest order stabilization free Virtual Element Method

for the 2D Poisson equation

Stefano Berronea,1, Andrea Borioa,1, Francesca Marcona,1,∗

aDipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi
24, Torino, 10129, Italy

Abstract

We analyze the first order Enlarged Enhancement Virtual Element Method
(E2VEM) for the Poisson problem. The method allows the definition of bilin-
ear forms that do not require a stabilization term, thanks to the exploitation
of higher order polynomial projections that are made computable by suitably
enlarging the enhancement property (from which comes the prefix E2) of lo-
cal virtual spaces. We provide a sufficient condition for the well-posedness
and optimal order a priori error estimates. We present numerical tests on
convex and non-convex polygonal meshes that confirm the robustness of the
method and the theoretical convergence rates.

Keywords: Virtual Element Methods, Poisson problem, polygonal meshes
65N12, 65N15, 65N30

1. Introduction

Virtual Element Methods (VEM) are polygonal methods for solving par-
tial differential equations, that were first introduced in primal conforming
form in [1] and were later on applied to most of the relevant problems of
interest in applications, such as advection-diffusion-reaction equations [2],
elastic and inelastic problems [3], parabolic and hyperbolic problems [4, 5],
simulations in fractured media [6, 7]. Standard VEM discrete bilinear forms
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are characterized by the presence of an arbitrary non-polynomial stabilizing
term that ensures the coercivity and that requires to be tuned depending
on the problem analyzed. This arbitrarity of the discrete forms could be
an issue, for instance, in the derivation of a posteriori error estimates [8, 9],
where the stabilization term is always at the right-hand side when bounding
the error in terms of the error estimator, both from above and from below.
Moreover, the isotropic nature of the stabilization term becomes an issue
when devising SUPG stabilizations [10, 11], in problems with anisotropic co-
efficients, or in the derivation of anisotropic a posteriori error estimates [12]
or in complex non-linear problems [13]. Finally, we mention [14] where it has
been shown the sensitivity of the solution of eigenvalue problems to variable
parameters included in the discretization matrices.

Recently, the definition of VEM formulations that do not require an ar-
bitrary non-polynomial stabilization term has received special interest. In
particular, a preliminary version of this work has been made available to
the scientific community as a preprint [15], and recent works developed and
applied this approach to various problems such as linear and non-linear elas-
ticity [16, 17, 18] and eigenproblems [19]. Moreover, in [20] a stabilization-free
VEM formulation has been proposed for advection-diffusion problems in the
advection-dominated regime and in [21] a comparison between the proposed
method and standard Virtual Elements from [2] has been done, showing that
the new formulation can induce smaller errors in the case of anisotropic dif-
fusion tensors, due to the isotropic nature of the stabilization.

In this work, we analyze the Enlarged Enhancement Virtual Element
Methods (E2VEM), designed to allow the definition of a coercive bilinear
form that involves only polynomial projections. In this framework, it is
not required to add an arbitrary stabilizing bilinear form accounting for the
non polynomial part of VEM functions. The method is based on the use of
higher order polynomial projections in the discrete bilinear form with respect
to the standard one [2] and on a modification of the VEM space to allow the
computation of such projections. In particular, we extend the enhancement
property that is used in the definition of the VEM space ([22], [2]), without
changing the set of degrees of freedom. The degree of polynomial enrichment
is chosen locally on each polygon, such that the discrete bilinear form is
coercive.

The proof of well-posedness is quite elaborate, thus in this paper we deal
only with the lowest order formulation and, for the sake of simplicity, we
focus on the two dimensional Poisson’s problem with homogenous Dirichlet
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boundary conditions, the extension to general boundary conditions being
analogous to what is done for classical VEM. Moreover, the formulation and
proofs presented in this work can also be easily extended to the case of a non
constant anisotropic diffusion tensor.

The outline of the paper is as follows. In Section 2 we state our model
problem. In Section 3 we introduce the approximation functional spaces and
projection operators and we state the discrete problem. Section 4 contains
the discussion about the well-posedness of the discrete problem under suitable
sufficient conditions on the local projections. In Section 5 we prove optimal
order a priori error estimates. Finally, Section 6 contains some numerical
results assessing the rates of convergence of the method.

Throughout the work, (·, ·)ω denotes the standard L2 scalar product de-
fined on a generic ω ⊂ R2, γ∂ω denotes the trace operator, that restricts on
the boundary ∂ω an element of a space defined over ω ⊂ R2. Inside the
proofs, we decide to use a single character C for constants, independent of
the mesh size, that appear in the inequalities, which means that we suppose
to take at each step the maximum of the constants involved. Since the proofs
require the definition of several auxiliary spaces and operators, we provide
in Appendix A a table containing a summary of the relevant definitions.

2. Model Problem

Let Ω ⊂ R2 be a bounded open set. We are interested in solving the
following problem: {

−∆U = f in Ω,

U = 0 on ∂Ω.
(1)

Defining a : H1
0(Ω)× H1

0(Ω)→ R such that,

a (U,W ) := (∇U,∇W )Ω ∀U,W ∈ H1
0(Ω), (2)

then, given f ∈ L2(Ω), the variational formulation of (1) is given by: find
U ∈ H1

0(Ω) such that,

a (U,W ) = (f,W )Ω ∀W ∈ H1
0(Ω) . (3)

3. Discrete formulation

In order to define the discrete form of (3), Mh denotes a conforming
polygonal tessellation of Ω and E denotes a generic polygon of Mh. #Mh
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denotes the number of polygons of Mh and the maximum diameter of all

the polygons in Mh is denoted by h. Fixed E ∈ Mh, let {xi}
NV
E

i=1 be its
NV
E vertices counter clockwise ordered, EE the set of its edges and n∂E the

outward-pointing unit normal vector to ∂E. We assume thatMh satifies the
standard mesh assumptions for VEM (see for instance [23, 24]), i.e. ∃κ > 0
such that

1. for all E ∈ Mh, E is star-shaped with respect to a ball of radius
ρ ≥ κhE, where hE is the diameter of E;

2. for all edges e ⊂ ∂E, |e| ≥ κhE.

Notice that the above conditions imply that, denoting by NV
E the number of

vertices of E, it holds

∃NV
max > 0: ∀E ∈Mh, N

V
E ≤ NV

max . (4)

For any given E ∈ Mh, let Pk(E) be the space of polynomials of degree
up to k defined on E. Let Π∇,E1 : H1(E) → P1(E) be the H1(E)-orthogonal
operator, defined up to a constant by the orthogonality condition: ∀u ∈
H1(E), (

∇
(

Π∇,E1 u− u
)
,∇p

)
E

= 0 ∀ p ∈ P1(E) . (5)

In order to define Π∇,E1 uniquely, we choose any continuous and linear pro-
jection operator P0 : H1(E)→ P0(E), whose continuity constant in H1-norm
is independent of hE and continuous with respect to deformations of the
geometry, and we impose ∀u ∈ H1(E),

P0(Π∇,E1 u− u) = 0. (6)

Remark 1. Under the current mesh assumptions, a suitable choice for P0

is the integral mean on the boundary of E, i.e.

P0(u) :=
1

|∂E|

∫
∂E

γ∂E(u) ds ∀u ∈ H1(E).

Notice that this is a common choice, see for instance [2].
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For any given E ∈Mh, let l ∈ N be given, as detailed in the next section,
where we will choose l depending on NV

E (see Theorem 1 and Section 4.3).
Let ENE

1,l be the set of functions v ∈ H1(E) satisfying

(v, p)E =
(

Π∇,E1 v, p
)
E
∀p ∈ Pl+1(E) . (7)

We define the Enlarged Enhancement Virtual Space of order 1 as

VE1,l := {v ∈ ENE
1,l : ∆v ∈ Pl+1(E) , γe(v) ∈ P1(e) ∀e ∈ EE, v ∈ C0(∂E)} .

We define as degrees of freedom of this space the values of functions at the
vertices of E (see [1, 2]).

Moreover, let ` ∈ N#Mh be a vector and `(E) denote the element corre-
sponding to the polygon E, we define the global discrete space as

V1,` := {v ∈ H1
0(Ω) : v|E ∈ VE1,`(E)} .

Note that v ∈ V1,` is a continuous function that is a polynomial of degree 1
on each edge of the mesh.

To define our discrete bilinear form, let Π0,E
l ∇ : H1(E) → [Pl(E)]2 be

the L2(E)-projection operator of the gradient of functions in H1(E), defined,
∀u ∈ H1(E), by the orthogonality condition(

Π0,E
l ∇u,p

)
E

= (∇u,p)E ∀p ∈ [Pl(E)]2 . (8)

Remark 2. For each function u ∈ VE1,l, the above projection is computable
given the degrees of freedom of u, applying the Gauss-Green formula and
exploiting (7).

Let aEh : H1(E)× H1(E)→ R be defined as

aEh (u, v) :=
(

Π0,E
`(E)∇u,Π

0,E
`(E)∇v

)
E
∀u, v ∈ H1(E) , (9)

and ah : H1(Ω)× H1(Ω)→ R as

ah (u, v) :=
∑
E∈Mh

aEh (u, v) ∀u, v ∈ V1,` . (10)

We state the discrete problem as: find u ∈ V1,` such that

ah (u, v) =
∑
E∈Mh

(
f,Π0,E

0 v
)
E
∀v ∈ V1,` , (11)
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where, ∀E ∈Mh, Π0,E
0 : L2(E)→ R is the L2(E)-projection, defined by

Π0,E
0 v :=

1

|E|
(v, 1)E ∀v ∈ L2(E) . (12)

The above projection is computable for any given v ∈ VE1,l exploiting (7).

4. Well-posedness

This section is devoted to prove the well-posedness of the discrete problem
stated by (11), under suitable sufficient conditions on `. The main result is
given by Theorem 1, that implies the existence of an equivalent norm on V1,`

and the well-posedness of (11).
First, we define, for any given l ∈ N,

Pker
l (E) =

{
p ∈ [Pl(E)]2 :

∫
∂E

p · n∂Eγ∂E(v − P0(v)) = 0 ∀v ∈ VE1,l
}
.

(13)
Notice that the dimension of Pker

l (E) generally depends on the geometry
of the polygon and the definition of P0, but in Section 4.3 we provide an al-
gorithm for enforcing the sufficient condition that is assumed in the following
Theorem.

Theorem 1. Let E ∈Mh, u ∈ VE1,`(E) and `(E) ∈ N such that the following
condition is satisfied:

(`(E) + 1)(`(E) + 2)− dimPker
`(E)(E) ≥ NV

E − 1, (14)

then
Π0,E
`(E)∇u = 0 =⇒ ∇u|E = 0. (15)

We omit in the following the proof of the case of triangles (NV
E = 3

and `(E) = 0), indeed if E is a triangle, VE1,`(E) = P1(E) ∀`(E) ≥ 0, and

then Π0,E
`(E)∇u = ∇u ∀`(E) ≥ 0. Moreover, an explicit computation yields

dimPker
0 (E) = 0 if E is a triangle. For technical reasons, the proof of The-

orem 1 for a general polygon is split into two results, described in Sections
4.1 and 4.2, respectively. The proof relies on an auxiliary inf-sup condition
that is proved by constructing a suitable Fortin operator, whose existence is
guaranteed under condition (14).
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4.1. Auxiliary inf-sup condition

In this section, after some auxiliary results, we prove through Proposi-
tion 1 that (15) is satisfied if the auxiliary inf-sup condition (26) holds true.

Lemma 1. Let u ∈ VE1,l, with l ≥ 0. Then

Π0,E
l ∇u = 0 =⇒ Π∇,E1 u ∈ P0(E) .

Proof. Applying (8), we have

Π0,E
l ∇u = 0 =⇒ (∇u,p)E = 0 ∀p ∈ [Pl(E)]2 ,

that implies
(∇u,∇p)E = 0 ∀p ∈ P1(E) , (16)

thanks to the relation ∇P1(E) ⊆ ∇Pl+1(E) ⊆ [Pl(E)]2. Given (16) and (5),(
∇Π∇,E1 u,∇p

)
E

= 0 ∀p ∈ P1(E) =⇒ ∇Π∇,E1 u = 0

=⇒ Π∇,E1 u ∈ P0(E) .

Lemma 2. Let u ∈ VE1,l. If Π0,E
l ∇u = 0, then (7) can be rewritten as

(u, p)E = P0 (u) · (1, p)E ∀p ∈ Pl+1(E) , (17)

where P0 is the projection operator defined in Section 3.

Proof. Applying Lemma 1 and (6),

Π0,E
l ∇u = 0 =⇒ Π∇,E1 u = P0 (u) .

Then, (7) provides (17).

We now need to introduce some notation and definitions. First, let TE
denote the sub-triangulation of E obtained linking each vertex of E to the
centre of the ball with respect to which E is star-shaped, denoted by xC .
Let us define the set of internal edges of the triangulation TE as IE. For
any i = 1, . . . , NV

E , let τi ∈ TE be the triangle whose vertices are xi, xi+1

(with xNV
E +1 ≡ x1) and xC . Let ei denote the edge −−→xCxi ∈ IE and by nei

the outward-pointing unit normal vector to the edge ei of τi. Then, for each
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polygon E, we can define the reference polygon Ê, such that the mapping
F : Ê → E is given by

x = hEx̂+ xC . (18)

Let Σ be the set of all admissible reference polygons, i.e. satisfying the mesh
assumptions with the same regularity parameter as the polygons in the mesh.

Lemma 3 ([25, Proof of Lemma 4.9]). Σ is compact.

Definition 1. Let H1
T(E) be the broken Sobolev space

H1
T(E) :=

{
v ∈ L2(E) : v|τ ∈ H1(τ) ∀τ ∈ TE

}
.

Let u ∈ H1
T(E), we define ∀ei ∈ IE the jump function J·Kei : H1

T(E)→ L2(ei)
such that

JuKei := γei
(
u|τi
)
− γei

(
u|τi−1

)
.

Moreover, JuKIE denotes the vector containing the jumps of u on each ei ∈ IE.
We endow H1

T(E) with the following seminorm and norm : ∀u ∈ H1
T(E),

|u|2H1
T(E) :=

∑
τ∈TE

‖∇u‖2
[L2(τ)]2 +

NV
E∑

i=1

∥∥JuKei∥∥2

L2(ei)
, (19)

‖u‖2
H1
T(E) := |u|2H1

T(E) + ‖u‖2
L2(E) . (20)

Definition 2. Let V (E) be given by

V (E) := {v ∈
[
L2(E)

]2
: v|τ ∈ Hdiv(τ) ∀τ ∈ TE, JvKei ∈ L∞(ei) ∀ei ∈ IE}.

(21)
Then ∀v ∈ V (E), we define its seminorm and its norm:

|v|2V (E) :=
∑
τ∈TE

‖∇ · v‖2
L2(τ) + h2

E

∥∥JvKIE∥∥2

L∞(IE)
,

‖v‖2
V (E) := |v|2V (E) + ‖v‖2

[L2(E)]2

where ∥∥JvKIE∥∥L∞(IE)
:= max

i=1,...,NV
E

∥∥JvKei∥∥L∞(ei)
.

Remark 3. Let us note that [Pl(E)]2 ⊂ V (E). Hence, we can use ‖·‖V (E) as

a norm for [Pl(E)]2. Notice that, since [Pl(E)]2 ⊂ [C0(E)]2,
∥∥JpKIE∥∥L∞(IE)

=

0, ∀p ∈ [Pl(E)]2 .
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Definition 3. Let VE,P0

1,l be the space

VE,P0

1,l :=
{
v ∈ VE1,l : P0(v) = 0

}
. (22)

Definition 4. Denoting by {ψi}
NV
E

i=1 the set of Lagrangian basis functions of
VE1,l, let Q(∂E) be the vector space

Q(∂E) := span
{
γ∂E(ψi − P0(ψi))

}
, ∀i = 1, . . . , NV

E − 1. (23)

We remark that the above space is made up of continuous piecewise linear
polynomials on each edge. Notice that ∀q ∈ Q(∂E), ∃!v ∈ VE,P0

1,l such that

q = γ∂E(v).

Definition 5. Let RQ(E) be the vector space, lifting of Q(∂E) on E, given
by:

RQ(E) :=
{
q̄ ∈ L2(E) : q̄|τ ∈ P1(τ) ∀τ ∈ TE, γ∂E(q̄) ∈ Q(∂E), q̄(xC) = 0

}
.

(24)
We note that RQ(E) ⊂ H1

T(E) ∩ C0(E). Hence, we use the norm ‖·‖H1
T(E)

defined in (20) as a norm for RQ(E). Notice that
NV
E∑

i=1

∥∥Jq̄Kei∥∥L2(ei)
= 0. Let

{rj}
NV
E−1

j=1 denote a basis of RQ(E).

Now, we can introduce the bilinear form b which is used in Proposition 1.

Definition 6. Let b : RQ(E) × V (E) → R, such that ∀q̄ ∈ RQ(E), ∀v ∈
V (E)

b(q̄,v) =
∑
τ∈TE

∫
τ

[∇q̄ v + q̄∇ · v] dx−
NV
E∑

i=1

∫
ei

γei(q̄) JvKei · n
eids. (25)

Remark 4. In the following, for any given q̄ ∈ RQ(E) we use b(q̄,v) when
v is a polynomial or a function of the H(div;E)-conforming VEM space [26].
In these cases, an application of the divergence theorem gives

b(q̄,v) =

∫
∂E

q̄ v · n∂E ds ∀ q̄ ∈ RQ(E) .
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The following lemma gives the continuity of the bilinear form b.

Lemma 4. Let b be given by (25). Then b is a bilinear form and ∃Cb > 0
independent of hE such that

b(q̄,v) ≤ Cb ‖q̄‖H1
T(E) ‖v‖V (E) ∀q̄ ∈ RQ(E), ∀v ∈ V (E) .

Proof. The proof of this lemma can be found in Appendix B.

The following proposition is the first step towards the proof of Theorem 1.

Proposition 1. Let b denote the continuous bilinear form defined by (25).
If ∃β > 0, independent of hE, such that

∀q̄ ∈ RQ(E), sup
p∈[Pl(E)]2

b(q̄,p)

‖p‖V (E)

≥ β ‖q̄‖H1
T(E) , (26)

then (15) holds true.

Proof. Let u ∈ VE1,l, (8) yields,

Π0,E
l ∇u = 0 =⇒ (∇u,p)E = 0 ∀p ∈ [Pl(E)]2 .

Applying Gauss-Green formula, the previous relation becomes

(∇u,p)E =
(
γ∂E(u) ,p · n∂E

)
∂E
− (u,∇ · p)E = 0 ∀p ∈ [Pl(E)]2 .

Since ∇ · p ∈ Pl−1(E) we apply (17) and we obtain(
γ∂E(u) ,p · n∂E

)
∂E
− P0 (u) · (1,∇ · p)E = 0 ∀p ∈ [Pl(E)]2 .

Then we can apply the divergence theorem and find the relation(
γ∂E(u− P0 (u)) ,p · n∂E

)
∂E

= 0 ∀p ∈ [Pl(E)]2 . (27)

We have q = γ∂E(u− P0 (u)) ∈ Q(∂E) (Q(∂E) defined in (23)). Let q̄ ∈
RQ(E) be the lifting of q (RQ(E) defined in (24)), then the relation (27),
applying the divergence theorem, is

b(q̄,p) = 0 ∀p ∈ [Pl(E)]2 .

Then, since b is a continuous bilinear form, (26) implies q ≡ 0. Finally, since
u ∈ VE1,l, then u = P0 (u) and ∇u = ∇P0 (u) = 0.
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4.2. Proof of the inf-sup condition

In this section we show that (26) holds with β independent of hE. The
proof relies on the technique known as Fortin trick [27], that consists in the
following classical result.

Proposition 2 ([27, Proposition 5.4.2]). Assume that there exists an oper-
ator ΠE : V (E)→ [Pl(E)]2 that satisfies, ∀v ∈ V (E),

b(q̄,ΠEv − v) = 0 ∀q̄ ∈ RQ(E) , (28)

and assume that there exists a constant CΠ > 0, independent of hE, such
that

‖ΠEv‖V (E) ≤ CΠ ‖v‖V (E) ∀v ∈ V (E) . (29)

Assume moreover that ∃η > 0, independent of hE such that

inf
q∈RQ(E)

sup
v∈V (E)

b(q,v)

‖q‖H1
T(E) ‖v‖V (E)

≥ η . (30)

Then the discrete inf-sup condition (26) is satisfied, with β = η
CΠ

.

Remark 5. The inf-sup constant β in (26) has to be independent of the mesh
size in order to guarantee that the constant in (46), involved in the coercivity
of the bilinear form of (11), is independent of the mesh size.

Remark 6. The operator ΠE defined in the following is such that the con-
stant CΠ depends on NV

max and on the continuity constant of P0, both are
bounded independently of hE by assumption.

Following the above results, we have to prove (30) and to show the exis-
tence of the operator ΠE satisfying (28) and (29). In the following proposition
we achieve the first task.

Proposition 3. Let b : RQ(E) × V (E) → R be defined by (25). Then the
inf-sup condition (30) holds true.

Proof. Let q ∈ RQ(E) be given arbitrarily. For any τi ∈ TE, we recall that
the vertices of τi are xC , xi =

( xi,1
xi,2

)
and xi+1 =

( xi+1,1
xi+1,2

)
. Let e∂i and ne

∂
i

denote the edge −−−→xixi+1 and the outward-pointing unit normal vector to the
edge e∂i , respectively. Let ϕ1

i , ϕ
2
i ∈ [P1(τi)]

2 be given such that

ϕ1
i (x1, x2) =

(
x2 − xi, 2
−(x1 − xi, 1)

)
,ϕ2

i (x1, x2) =
∣∣e∂i ∣∣ne∂i =

(
xi+1,2 − xi,2
−(xi+1,1 − xi,1)

)
.

(31)
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Let B∂(τi) := span{ϕ1
i ,ϕ

2
i } ⊂ [P1(τi)]

2. Notice that ∀v ∈ B∂(τi) we have

∇ · v = 0 and
∥∥∥v · ne∂i ∥∥∥

L2(e∂i )
is a norm on B∂(τi). Indeed, if v ∈ B∂(τi)

and
∥∥∥v · ne∂i ∥∥∥

L2(e∂i )
= 0, then an explicit computation yields v ≡ 0 on τi.

Moreover, let B∂(TE) := {v : v|τ ∈ B∂(τ) ∀τ ∈ TE} ⊂ V (E). Notice that

∀v ∈ B∂(TE) we have that
∑

τ∈TE ‖∇ · v‖
2
L2(τ) = 0 and

∥∥v · n∂E∥∥
L2(∂E)

is a

norm on B∂(TE). We define v? ∈ B∂(TE) such that v?|∂E · n∂E = γ∂E(q). In

particular, ∀τi ∈ TE v?|τi = q(xi+1)−q(xi)
|e∂i |

ϕ1
i + q(xi)

|e∂i |
ϕ2
i . Notice that ‖q‖L2(∂E) =∥∥v? · n∂E∥∥

L2(∂E)
and b(q,v?) =

∫
∂E
qv? · n∂E. Then,

sup
v∈V (E)

b(q,v)

‖q‖H1
T(E) ‖v‖V (E)

≥ b(q,v?)

‖q‖H1
T(E) ‖v?‖V (E)

=

∫
∂E
q v? · n∂E

‖q‖H1
T(E) ‖v?‖V (E)

=
‖q‖L2(∂E)

‖q‖H1
T(E)

∥∥v? · n∂E∥∥
L2(∂E)

‖v?‖V (E)

.

(32)

We have to estimate from below the last two factors. We notice that ‖q‖L2(∂E)

is a norm on RQ(E), since q ∈ P1(TE) and q(xC) = 0. Thus, we can exploit
the equivalence of norms on finite dimensional spaces. Hence, regarding the
first norm, we get, by a scaling argument,

‖q‖2
L2(∂E) =

∑
e∈∂E

‖q‖2
L2(e) = hE

∑
ê∈∂Ê

‖q̂‖2
L2(ê) ≥ ChE

∑
τ̂∈TÊ

‖q̂‖2
L2(τ̂) +

∥∥∥∇̂q̂∥∥∥2

[L2(τ̂)]2


= ChE

(∑
τ∈TE

h−2
E ‖q‖

2
L2(τ) + ‖∇q‖2

[L2(τ)]2

)
≥ ChE min{1, h−2

E } ‖q‖
2
H1
T(E)

≥ ChE ‖q‖2
H1
T(E) .

(33)

Notice that the constant above is independent of the choice of reference
element by Lemma 3. The second norm is estimated using the definition of
dual norm and the trace inequality

∥∥γ∂E(w)
∥∥

L2(∂E)
≤ Ch

1
2
E

(
h−2
E ‖w‖

2
L2(E) + ‖∇w‖2

[L2(E)]2

) 1
2 ∀w ∈ H1(E) ,
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as follows:∥∥v? · n∂E∥∥
L2(∂E)

= sup
χ∈L2(∂E)

(
v? · n∂E, χ

)
∂E

‖χ‖L2(∂E)

≥ sup
w∈H1(E)

(
v? · n∂E, γ∂E(w)

)
∂E

‖γ∂E(w)‖L2(∂E)

≥ Ch
− 1

2
E hE sup

w∈H1(E)

h−1
E

(
v? · n∂E, γ∂E(w)

)
∂E(

h−2
E ‖w‖

2
L2(E) + ‖∇w‖[L2(E)]2

) 1
2

.

(34)

Let w? ∈ H1(E) be such that

(∇w?,∇ϕ)E + h−2
E (w?, ϕ)E = h−1

E

(
v? · n∂E, γ∂E(w)

)
∂E

.

Notice that ŵ? = w?◦F (F being the mapping defined by (18)) is the solution
of (

∇̂ŵ?, ∇̂ϕ̂
)
Ê

+ (ŵ?, ϕ̂)Ê =
(
v̂? · n∂Ê, γ∂Ê(ϕ̂)

)
∂Ê

∀ϕ̂ ∈ H1(Ê) .

Notice that

sup
ŵ∈H1(Ê)

(
v̂? · n∂Ê, γ∂Ê(ŵ)

)
∂Ê

‖ŵ‖H1(Ê)

=

(
v̂? · n∂Ê, γ∂Ê(ŵ?)

)
∂Ê

‖ŵ?‖H1(Ê)

.

This relation holds true since the greater than inequality is trivial using the
definition of sup and the less than inequality can be proved applying the
property of inner products |(x, y)|2 ≤ (x, x) (y, y), indeed

sup
ŵ∈H1(Ê)

(
v̂? · n∂Ê, γ∂Ê(ŵ)

)
∂Ê

‖ŵ‖H1(Ê)

= sup
ŵ∈H1(Ê)

(
∇̂ŵ?, ∇̂ŵ

)
Ê

+ (ŵ?, ŵ)Ê

‖ŵ‖H1(Ê)

≤ sup
ŵ∈H1(Ê)

‖ŵ?‖H1(Ê) ‖ŵ‖H1(Ê)

‖ŵ‖H1(Ê)

=
‖ŵ?‖2

H1(Ê)

‖ŵ?‖H1(Ê)

=

(
v̂? · n∂Ê, γ∂Ê(ŵ?)

)
∂Ê

‖ŵ?‖H1(Ê)

.

13



Then, by choosing ϕ = w? and ϕ̂ = ŵ? in the equations above we get

sup
w∈H1(E)

h−1
E

(
v? · n∂E, γ∂E(w)

)
∂E(

h−2
E ‖w‖

2
L2(E) + ‖∇w‖[L2(E)]2

) 1
2

≥
h−2
E ‖w?‖

2
L2(E) + ‖∇w?‖2

[L2(E)]2(
h−2
E ‖w?‖

2
L2(E) + ‖∇w?‖[L2(E)]2

) 1
2

=
(
h−2
E ‖w

?‖2
L2(E) + ‖∇w?‖2

[L2(E)]2

) 1
2

=

(
‖ŵ?‖2

L2(Ê) +
∥∥∥∇̂ŵ?∥∥∥2

[L2(Ê)]
2

) 1
2

=

(
v̂? · n∂Ê, γ∂Ê(ŵ?)

)
∂Ê

‖ŵ?‖H1(Ê)

= sup
ŵ∈H1(Ê)

(
v̂? · n∂Ê, γ∂Ê(ŵ)

)
∂Ê

‖ŵ‖H1(Ê)

.

Moreover, notice that the term sup
ŵ∈H1(Ê)

(v̂·n∂Ê ,γ∂Ê(ŵ))
∂Ê

‖ŵ‖H1(Ê)
is a norm on B∂(TE).

Indeed, if sup
ŵ∈H1(Ê)

(v̂·n∂Ê ,γ∂Ê(ŵ))
∂Ê

‖ŵ‖H1(Ê)
= 0 then v̂ · n∂Ê = 0 and v̂ = 0. Then,

applying the above results to (34), recalling that
∑

τ∈TE ‖∇ · v‖
2
L2(τ) = 0

∀v ∈ B∂(TE), using the equivalence of norms on finite dimensional spaces
and a scaling argument, we get

∥∥v? · n∂E∥∥
L2(∂E)

≥ Ch
− 1

2
E hE sup

ŵ∈H1(Ê)

(
v̂? · n∂Ê, γ∂Ê(ŵ)

)
∂Ê

‖ŵ‖H1(Ê)

≥ Ch
− 1

2
E hE ‖v̂?‖V (Ê)

= Ch
− 1

2
E

(∑
τ∈TE

‖v?‖2
[L2(τ)]2 + h2

E

∥∥Jv?KIE∥∥2

L∞(IE)

) 1
2

= Ch
− 1

2
E ‖v

?‖V (E) ,

(35)

where C is independent of hE and of the choice of reference element by
Lemma 3. The proof is thus concluded by applying the estimates (33) and
(35) to (32).

In the following, assuming (14), we prove the existence of an operator ΠE

satisfying (28) and (29). First, we need some auxiliary results.

Definition 7. Let {ri}
NV
E−1

i=1 be a basis of RQ(E). Let us define the set of
linear operators Di : V (E)→ R such that ∀v ∈ V (E)

Di(v) := b(ri,v) ∀i = 1, . . . , NV
E − 1 .

14



Lemma 5. If (`(E) + 1)(`(E) + 2)− dimPker
`(E)(E) ≥ NV

E − 1, there exists a

set of functions πj ∈
[
P`(E)(E)

]2
such that

Di(πj) = δij ∀i, j = 1, . . . , NV
E − 1. (36)

Proof. In the following, with a slight abuse of notation we use ` instead of
`(E). Let V M

` (E) be the local mixed virtual element space of order `, defined
in [26], i.e.

V M
` (E) := {v ∈ H(div;E) ∩ H(rot;E) : γe

(
v · n∂E

)
∈ P`(e)∀e ∈ EE,

divv ∈ P`(E) and rotv ∈ P`−1(E)}.

Notice that [P`(E)]2 ⊂ V M
` (E). For each v ∈ V M

` (E), the degrees of freedom
of v are defined [26] by

1.
∫
e
v · n∂E q ds, ∀e ∈ EE, ∀q ∈ P`(e),

2.
∫
E
v · ∇p` dx, ∀p` ∈ P`(E),

3.
∫
E
v ·p⊥` dx, ∀p⊥` ∈ {p⊥` ∈ [P`(E)]2 :

∫
E
p⊥` · ∇q dx = 0 ∀q ∈ P`+1(E)}.

The number of degrees of freedom defined by the first, the second and the
third condition is, respectively, (` + 1)NV

E , (`+1)(`+2)
2

− 1 and (`−1)(`+2)
2

+ 1.
Globally, dimV M

` (E) = (`+ 1)NV
E + `(`+ 2).

Notice that a possible choice for the basis of P`(∂E) := {p ∈ P`(e) ,∀e ∈
EE} is composed by the NV

E − 1 basis functions {γ∂E(ri)}
NV
E−1

i=1 ⊂ Q(∂E) ⊂
P`(∂E), completed by a choice of linearly independent functions {qCi }

(`+1)NV
E

i=NV
E
⊂

P`(∂E). Moreover, for any v ∈ V M
` (E) we have

Di(v) = b(ri,v) =

∫
∂E

(
v · n∂E

)
γ∂E(ri) ds ∀i = 1, . . . , NV

E − 1 ,

by an application of the divergence theorem. Hence, the first set of degrees
of freedom can be split into two groups, i.e.

• Di(v), ∀i = 1, . . . , NV
E − 1,

•
∫
∂E
v · n∂E qCi ds, ∀i = NV

E , . . . , (`+ 1)NV
E .
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Let j ∈ {1, . . . , NV
E − 1} and let V R(E; j) ⊂ V M

` (E) be

V R(E; j) := {v ∈ V M
` (E) : Di(v) = 0 ∀i = 1, . . . , NV

E − 1, i 6= j}. (37)

Notice that dimV R(E; j) = dimV M
` (E)− (NV

E −1) + 1. Moreover, we define
V ⊥P`(E) ⊂ V M

` (E), given by

V ⊥P`(E) := {v ∈ V M
` (E) : dof(v) ·dof(p) = 0∀p ∈ [P`(E)]2 \Pker

` (E)} (38)

where dof(v) denotes the vector of degrees of freedom of v ∈ V M
` (E). Notice

that dimV ⊥P`(E) = dimV M
` (E)−

(
(`+ 1)(`+ 2)− dimPker

` (E)
)
. Since (`+

1)(` + 2) − dimPker
` (E) ≥ NV

E − 1, then dimV R(E; j) > dimV ⊥P`(E) and
thus

∃wj ∈ V R(E; j) ∩
(
[P`(E)]2 \ Pker

` (E)
)
, wj 6= 0 .

Then we can choose πj = wj such that Dj(wj) = 1, this is possible
since Dj(wj) cannot be zero. Indeed, by contradiction let us suppose that
Dj(wj) = 0, then, by definition of Pker

` (E) (13), wj ∈ Pker
` (E). This is a

contradiction since wj ∈ [P`(E)]2 \ Pker
` (E) and wj 6= 0.

In the following proposition we provide a definition of ΠE and prove (28)
and (29).

Proposition 4. Under the hypothesis of Theorem 1, let us define ΠE :
V (E)→ [P`(E)]2 such that ∀v ∈ V (E)

ΠEv :=

NV
E−1∑
i=1

Di(v)πi ,

where πi satisfies (36). Then ΠE satisfies (28) and (29).

Proof. Since

∀v ∈ V (E) , Di(ΠEv) = Di(v) ∀i = 1, . . . , NV
E − 1, (39)

let us check that ΠE satisfies (28), indeed by construction ∀ri ∈ RQ(E), i =
1, . . . , NV

E − 1, ∀v ∈ V (E):

b(ri,ΠEv − v) = Di(ΠEv − v) = 0.
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Furthermore, let us consider Π̂Ev = ΠEv◦F defined on the reference polygon
Ê. Applying the linearity of the definition of the mapping F : Ê → E,
presented in (18), we have

Π̂Ev =

NV
E−1∑
i=1

Di (v)πi

 ◦ F =

NV
E−1∑
i=1

Di (v) (πi ◦ F ) =

NV
E−1∑
i=1

Di (v) π̂i .

(40)
Then, applying Lemma 4, we have ∀i = 1, . . . , NV

E − 1

|Di(v)| = hE |b(r̂i, v̂)| ≤ CbhE ‖r̂i‖H1
T(Ê) ‖v̂‖V (Ê) . (41)

Then, we want to prove the continuity of ΠEv. Since

ΠEv ∈ [P`(E)]2 =⇒ ΠEv ∈ C0(E) =⇒
∥∥JΠEvKIE

∥∥
L∞(IE)

= 0,

applying (40) and (41), we have

‖ΠEv‖2
V (E) = ‖ΠEv‖2

[L2(E)]2 + ‖∇ · ΠEv‖2
L2(E)

= h2
E

∥∥∥∥∥∥
NV
E−1∑
i=1

Di (v) π̂i

∥∥∥∥∥∥
2

L2(Ê)

+

∥∥∥∥∥∥∇̂ ·
NV

E−1∑
i=1

Di (v) π̂i

∥∥∥∥∥∥
2

L2(Ê)

≤ C

NV
E−1∑
i=1

|Di (v)|2
(
h2
E ‖π̂i‖

2

[L2(Ê)]
2 +

∥∥∥∇̂ · π̂i∥∥∥2

L2(Ê)

)
≤ CNV

max max
i=1,...,NV

E−1

{
‖r̂i‖2

H1
T(Ê) ‖π̂i‖

2
V (Ê)

}
h2
E ‖v̂‖V (Ê) .

(42)

We set C(Ê) := max
i
‖r̂i‖H1

T(Ê) max
i
‖π̂i‖V (Ê). This is a continuous function

on the set of admissible reference elements Σ, which is a compact set by
Lemma 3. Indeed, ‖r̂i‖H1

T(Ê) is a continuous function ∀i = 1, . . . , NV
E − 1 on

Σ. Moreover, by definition, π̂i depends continuously on the set {r̂i}
NV
E−1

i=1 .
Then there exists M = maxÊ∈ΣC(Ê) > 0. Finally, starting from (42), it
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results that ∃C > 0 such that

‖ΠEv‖2
V (E) ≤ Ch2

E ‖v̂‖V (Ê)

≤ C

h2
E

∑
τ̂∈TÊ

‖v̂‖2
[L2(τ̂)]2 +

∑
τ̂∈TÊ

∥∥∥∇̂ · v̂∥∥∥2

L2(τ̂)
+ h2

E

∥∥∥Jv̂KIÊ∥∥∥2

L∞(IÊ)


= C ‖v‖2

V (E) .

(43)

4.3. Numerical evaluation of the sufficient degree of projection

Algorithm 1 Algorithm for the computation of `(E) on a given polygon

Input: A polygon E ∈Mh

1: Let `(E) be the smallest number satisfying (`(E)+1)(`(E)+2) ≥ NV
E −1

2: Compute the matrix B such that Bij = (∇ϕj,mi)E ∀mi ∈ [M̂Σ,`(E) (E)]2

3: Perform a QR decomposition of Bᵀ:

Bᵀ = QR

with Q ∈ RNV
E×(`(E)+1)(`(E)+2) and R ∈ R(`(E)+1)(`(E)+2)×(`(E)+1)(`(E)+2)

4: N ← number of diagonal elements of R whose absolute value is ≥ 1e−12
5: while N < NV

E − 1 do
6: `(E)← `(E) + 1

7: Compute B̂ such that B̂ij = (∇ϕj,mi)E ∀mi ∈ [M̂`(E) (E)]2

8: Perform a QR decomposition of B̂ᵀ −QQᵀB̂ᵀ:
B̂ᵀ −QQᵀB̂ᵀ = Q̂R̂

with Q̂ ∈ RNV
E×(`(E)+1) and R̂ ∈ R(`(E)+1)×(`(E)+1)

9: Bᵀ ←
[
Bᵀ B̂ᵀ

]
10: R←

[
R QᵀB̂ᵀ

0 R̂

]
11: Q←

[
Q Q̂

]
12: N ← number of diagonal elements of R whose absolute value is ≥

1e− 12
13: end while
14: return `(E), B

In this section, we describe a way to compute the minimum `(E) that
satisfies (14) for a generic polygon E ∈ Mh. Let us start considering the
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construction of Π0,E
`(E)∇. The computation of the matrix representing the

gradient projection follows standard VEM practice (see [28]). Let {ϕj, j =
1, . . . , NV

E } be a basis of VE1,`(E) and let

M̂p (E) :=

{
(x− xE)α1(y − yE)α2

hα1+α2+1
E

, with p = α1 + α2

}
be the set of homogeneus scaled monomials of degree p and [M̂p (E)]2 :={(

m
0

)
, m ∈ M̂p (E)

}
∪
{(

0
m

)
, m ∈ M̂p (E)

}
. We consider the scaled mono-

mial basis [M̂Σ,`(E) (E)]2 := {mk, k = 1, . . . , (`(E) + 1)(`(E) + 2)} of[
P`(E)(E)

]2

given by the direct sum of [M̂p (E)]2 with 0 ≤ p ≤ `(E). Since

Π0,E
`(E)∇ϕj ∈

[
P`(E)(E)

]2

, we have

Π0,E
`(E)∇ϕj =

(`(E)+1)(`(E)+2)∑
k=1

πkjmk , ∀i = 1, . . . , NV
E .

It is then easy to check that the matrix Π̂ collecting the coefficients πkj is
obtained by solving the matrix system

GΠ̂ = B , (44)

whereGik = (mi,mk)E is symmetric and positive definite andBij = (∇ϕj,mi)E.

Since dimVE1,`(E) = NV
E , and thus dim∇VE1,`(E) = NV

E−1, then Π0,E
`(E)∇ : ∇VE1,`(E) →[

P`(E)(E)
]2

is injective if and only if the dimension of its range is NV
E − 1.

This implies that the desired rank of Π̂ is NV
E − 1 and, since G is non-

singular, this is guaranteed if the rank of B is also NV
E − 1. In order to

determine for each polygon E the minimum `(E) providing numerically the
coercivity, we apply Algorithm 1. We first set `(E) equal to the neces-
sary condition of the injectivity for the projector Π0,E

`(E)∇, i.e. (14) with

dimPker
`(E)(E) set to zero. Then, we start by computing the corresponding

matrix B. We perform a QR decomposition of Bᵀ: Bᵀ = QR, with the
matrix Q of dimension NV

E × (`(E) + 1)(`(E) + 2) and the matrix R of di-
mension (`(E) + 1)(`(E) + 2) × (`(E) + 1)(`(E) + 2). We evaluate if the
number of non-zero elements of the diagonal of the matrix R is equal to the
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dimension of the space of gradients of VEM functions, i.e. NV
E − 1. If not,

we increase `(E) until we satisfy the condition. Notice that the QR decom-
position is updated incrementally at each iteration and that the additional
cost of performing Algorithm 1 with respect to knowing `(E) in advance is

the QR decomposition of a matrix of dimension dim
[
P`(E)(E)

]2

×NV
E . Once

we have the value of `(E) and the corresponding matrix B, we compute the
matrix G and solve (44). The numerical robustness of this procedure with
respect to hE is guaranteed by the choice of the polynomial basis, that is such
that both G and B are invariant with respect to rescalings of the polygon.

Remark 7. In the implementation of Algorithm 1, we suggest the House-
holder QR decomposition at line 3 and the application of Givens rotations or
modified Gram-Schmidt with renormalization at line 8.

4.4. Coercivity of the discrete bilinear form

In this section we prove the coercivity of the discrete problem defined by
(11) with respect to the standard H1

0(Ω) norm, denoted by

‖V ‖H1
0(Ω) = ‖∇V ‖[L2(Ω)]2 ∀V ∈ H1

0(Ω) .

Let

‖v‖` :=

( ∑
E∈Mh

∥∥∥Π0,E
`(E)∇v

∥∥∥2

[L2(E)]2

) 1
2

∀v ∈ V1,` .

We have the following result.

Proposition 5. Suppose `(E) satisfies (14) ∀E ∈Mh. Then, ‖·‖` is a norm
on V1,`.

Proof. Let v ∈ V1,` be given. It is clear from its definition that ‖v‖` is a
semi-norm. Applying Theorem 1 and since v ∈ H1

0(Ω), we have that

‖v‖` = 0 =⇒ ‖v‖H1
0(Ω) = 0 =⇒ v = 0 .

Lemma 6. We have that

‖v‖` ≤ ‖v‖H1
0(Ω) ∀v ∈ V1,` . (45)
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Moreover, if `(E) satisfies (14) ∀E ∈Mh, then

∃c∗ > 0: ‖v‖` ≥ c∗ ‖v‖H1
0(Ω) ∀v ∈ V1,` , (46)

where c∗ does not depend on h.

Proof. Relation (45) follows immediately by the definition of Π0,E
`(E) and an

application of the Cauchy-Schwarz inequality. Indeed, let E ∈Mh, then∥∥∥Π0,E
`(E)∇v

∥∥∥2

E
=
(

Π0,E
`(E)∇v,Π

0,E
`(E)∇v

)
E

=
(
∇v,Π0,E

`(E)∇v
)
E
≤ ‖∇v‖[L2(E)]2

∥∥∥Π0,E
`(E)∇v

∥∥∥
[L2(E)]2

.

On the other hand, by standard scaling arguments we have

‖v‖2
` =

∑
E∈Mh

∥∥∥Π0,E
`(E)∇v

∥∥∥2

[L2(E)]2
=
∑
E∈Mh

∥∥∥Π̂0,Ê
`(E)∇̂ (v̂ − P0(v̂))

∥∥∥2

[L2(Ê)]
2 .

Notice that ∀Ê ∈ Σ, where Σ is the set of admissible reference elements,

v̂ − P0(v̂) ∈ V Ê,P0

1,`(E). Moreover, ∀ŵ ∈ V Ê,P0

1,`(E) both
∥∥∥Π̂0,Ê

`(E)∇̂ŵ
∥∥∥

[L2(Ê)]
2 and∥∥∥∇̂ŵ∥∥∥

[L2(Ê)]
2 are norms. Then, by standard arguments about the equivalence

of norms on finite dimensional spaces, we obtain ∀Ê ∈ Σ∥∥∥Π̂0,Ê
`(E)∇̂ŵ

∥∥∥
[L2(Ê)]

2 ≥ C(Ê)
∥∥∥∇̂ŵ∥∥∥

[L2(Ê)]
2 (47)

where

C(Ê) =

min
ẑ∈VÊ,P0

1,`(E)
:‖dof (ẑ)‖l2=1

∥∥∥Π̂0,Ê
`(E)∇̂ẑ

∥∥∥
[L2(Ê)]

2√
NV
E − 1 maxi=1,...,NV

E−1

∥∥∥∇̂ψ̂i∥∥∥
[L2(Ê)]

2

. (48)

C(Ê) is a continuous function on Σ, which is a compact set by Lemma 3.

Indeed, Π̂0,Ê
`(E) is continuous on Σ, as well as functions in V Ê,P0

1,`(E) following

proofs of [25, Lemma 4.9] and [29, Lemma 4.5]. Moreover, C(Ê) > 0, ∀Ê ∈
Σ. Indeed, applying Proposition 2, it holds that ∀ẑ ∈ V Ê,P0

1,`(E) : ‖dof (ẑ)‖l2 = 1,∥∥∥Π̂0,Ê
`(E)∇̂ẑ

∥∥∥2

[L2(Ê)]
2 =

(
∇̂ẑ, Π̂0,Ê

`(E)∇̂ẑ
)
Ê

=
(
ẑ, Π̂0,Ê

`(E)∇̂ẑ · n
∂Ê
)
∂Ê

= b(ẑR, Π̂
0,Ê
`(E)∇̂ẑ)

≥ β
∥∥∥Π̂0,Ê

`(E)∇̂ẑ
∥∥∥

[L2(Ê)]
2 ‖ẑR‖H1

T(Ê) > 0 ,
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where ẑR is the lifting of γ∂Ê(ẑ) on RQ(Ê). Then, ∃m > 0 such that m :=
minÊ∈ΣC(Ê). Finally, by standard scaling argument we obtain

‖v‖2
` ≥ m2

∑
E∈Mh

∥∥∥∇̂ (v̂ − P0(v̂))
∥∥∥2

[L2(Ê)]
2 = m2 ‖v‖H1

0(Ω) . (49)

In the following theorem, we provide a proof of the continuity and the
coercivity of the discrete bilinear form. The coercivity property follows from
Lemma 6.

Theorem 2. Let ah be the bilinear form defined by (10). Then,

ah (w, v) ≤ ‖w‖H1
0(Ω) ‖v‖H1

0(Ω) ∀w, v ∈ V1,` . (50)

Moreover, suppose `(E) satisfies (14) ∀E ∈Mh. Then,

∃C > 0, independent of h : ah (w,w) ≥ C ‖w‖2
H1

0(Ω) ∀w ∈ V1,` . (51)

Proof. Let w, v ∈ V1,` be given. Applying the Cauchy-Schwarz inequality
and (45) we get

ah (w, v) =
∑
E∈Mh

(
Π0,E
`(E)∇w,Π

0,E
`(E)∇v

)
E

≤
∑
E∈Mh

∥∥∥Π0,E
`(E)∇w

∥∥∥
[L2(E)]2

∥∥∥Π0,E
`(E)∇v

∥∥∥
[L2(E)]2

≤ ‖w‖` ‖v‖` ≤ ‖w‖H1
0(Ω) ‖v‖H1

0(Ω) .

Moreover, assuming that `(E) satisfies (14) ∀E ∈ Mh, we can apply the
lower bound in (46) and get

ah (w,w) = ‖w‖2
` ≥ (c∗)

2 ‖w‖2
H1

0(Ω) .

This theorem implies that the bilinear form ah of the problem (11) satisfies
the hypothesis of the Lax-Milgram theorem, hence the problem admits a
unique solution.
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5. A priori error estimates

In this section we derive error estimates for the proposed method, in H1
0

norm and in the standard L2 norm. First, we recall classical results for Vir-
tual Element Methods concerning the interpolation error and the polynomial
projection error (see [8, 2]).

Lemma 7. Let U ∈ H2(Ω), then there exists C > 0 such that ∀h, ∃UI ∈ V1,`

satisfying
‖U − UI‖L2(Ω) + h ‖U − UI‖H1

0(Ω) ≤ Ch2 |U |2 . (52)

Proof. The proof of this result is detailed in [20], it follows a similar approach
as the one in [8].

Lemma 8. Let U ∈ H2(Ω), then there exist C1, C2 > 0 such that∥∥Π0
`∇U −∇U

∥∥
L2(Ω)

≤ C1h |U |2 , (53)∥∥Π0
0U − U

∥∥
L2(Ω)

≤ C2h ‖U‖H1
0(Ω) . (54)

Theorem 3. Let U ∈ H2(Ω) ∩ H1
0(Ω) and f ∈ L2(Ω) be the solution and the

right-hand side of (3), respectively. Then, ∃C > 0 such that the unique
solution u ∈ V1,` to problem (11) satisfies the following error estimate:

‖U − u‖H1
0(Ω) ≤ Ch

(
|U |2 + ‖f‖L2(Ω)

)
. (55)

Proof. Let UI be given by Lemma 7. Applying the triangle inequality, we
have

‖U − u‖H1
0(Ω) ≤ ‖U − UI‖H1

0(Ω) + ‖UI − u‖H1
0(Ω) . (56)

We deal with the two terms separately. The first one can be bounded applying
(52), i.e.

‖U − UI‖H1
0(Ω) ≤ Ch |U |2 . (57)

On the other hand, in order to deal with the second term of (56) let ε = UI−u.
First, applying the coercivity of the bilinear form ah (51) and the discrete
problem (11), we have that ∃C > 0:

C ‖ε‖2
H1

0(Ω) ≤ ah (ε, ε) = ah (UI, ε)− ah (u, ε) = ah (UI, ε)−
∑
E∈Mh

(
f,Π0,E

0 ε
)
E
.

(58)
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Applying the definition of the L2 projectors and adding and subtracting
terms, i.e. Π0,E

`(E)∇U and ∇U , we have

ah (ε, ε) = ah (UI − U, ε) + ah (U, ε)−
∑
E∈Mh

(
Π0,E

0 f, ε
)
E

= ah (UI − U, ε) +
∑
E∈Mh

(
Π0,E
`(E)∇U −∇U,∇ε

)
E

+ (∇U,∇ε)E −
(

Π0,E
0 f, ε

)
E

= ah (UI − U, ε) +
∑
E∈Mh

(
Π0,E
`(E)∇U −∇U,∇ε

)
E

+
(
f − Π0,E

0 f, ε
)
E
.

Let us consider the last three terms separately. The first one can be bounded
applying (50) and (52), i.e.

ah (UI − U, ε) ≤ C ‖UI − U‖H1
0(Ω) ‖ε‖H1

0(Ω) ≤ Ch |U |2 ‖ε‖H1
0(Ω) . (59)

Applying the Cauchy-Schwarz inequality and (53), the second term can be
bounded as follows:∑
E∈Mh

(
Π0,E
`(E)∇U −∇U,∇ε

)
E
≤
∑
E∈Mh

∥∥∥Π0,E
`(E)∇U −∇U

∥∥∥
L2(E)
‖ε‖H1

0(E)

≤ Ch |U |2 ‖ε‖H1
0(Ω) .

(60)

The last term can be bounded applying the definition of Π0,E
0 , the Cauchy-

Schwarz inequality and (54), i.e.∑
E∈Mh

(
f − Π0,E

0 f, ε
)
E

=
∑
E∈Mh

(
f, ε− Π0,E

0 ε
)
E

≤
∑
E∈Mh

‖f‖L2(E)

∥∥∥ε− Π0,E
0 ε

∥∥∥
L2(E)

≤ Ch ‖f‖L2(Ω) ‖ε‖H1
0(Ω) .

(61)

Finally, applying together (59), (60) and (61) into (58) and simplifying, we
have

‖ε‖H1
0(Ω) ≤ Ch

(
|U |2 + ‖f‖L2(Ω)

)
. (62)

Considering together (57) and (62) we prove (55).

Theorem 4. Let Ω be convex. Let U ∈ H2(Ω) ∩ H1
0(Ω) and f ∈ H1(Ω) be

the solution and the right-hand side of (3),respectively. Then, ∃C > 0 such
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that the unique solution u ∈ V1,` to problem (11) satisfies the following error
estimate:

‖U − u‖L2(Ω) ≤ Ch2
(
|U |2 + ‖f‖H1

0(Ω)

)
. (63)

Proof. Let us define the auxiliary problem: let Ψ ∈ H2(Ω)∩H1
0(Ω) the solution

of a (V,Ψ) = (U − u, V )Ω ∀V ∈ H1
0(Ω). From the definition of Ψ, we get:

∃C > 0 : |Ψ|2 ≤ C ‖U − u‖L2(Ω) , (64)

∃C > 0 : ‖Ψ‖H1
0(Ω) ≤ C ‖U − u‖L2(Ω) . (65)

Let us denote by ΨI the interpolant of Ψ according to Lemma 7. Applying
the auxiliary problem, the discrete problem (11) and the definition of the
bilinear form a (2), we have

‖U − u‖2
L2(Ω) = (U − u, U − u)Ω = a (U − u,Ψ)

= a (U,Ψ−ΨI) + a (U,ΨI)− a (u,Ψ)

= a (U,Ψ−ΨI) + (f,ΨI)Ω − a (u,Ψ)

= a (U,Ψ−ΨI) + (f,ΨI)Ω −

( ∑
E∈Mh

(
f,Π0,E

0 ΨI

)
E

)
+ah (u,ΨI)− a (u,Ψ) + a (u,ΨI)− a (u,ΨI)

= a (U − u,Ψ−ΨI) +

( ∑
E∈Mh

(
f,ΨI − Π0,E

0 ΨI

)
E

)
+ah (u,ΨI)− a (u,ΨI) .

(66)

Let us consider the terms of the previous relation separately. First, applying
the Cauchy-Schwarz inequality, (52), (54) and (64), we have, for the first
term,

a (U − u,Ψ−ΨI) ≤ ‖U − u‖H1
0(Ω) ‖Ψ−ΨI‖H1

0(Ω)

≤ Ch ‖U − u‖H1
0(Ω) |Ψ|2 ≤ Ch ‖U − u‖H1

0(Ω) ‖U − u‖L2(Ω) ,

(67)
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and, for the second one,∑
E∈Mh

(
f,ΨI − Π0,E

0 ΨI

)
E

=
∑
E∈Mh

(
f − Π0,E

0 f,ΨI − Π0,E
0 ΨI

)
E

≤
∑
E∈Mh

∥∥∥f − Π0,E
0 f

∥∥∥
L2(E)

∥∥∥ΨI − Π0,E
0 ΨI

∥∥∥
L2(E)

≤ Ch |f |H1(Ω)

∑
E∈Mh

∥∥∥ΨI − Π0,E
0 ΨI

∥∥∥
L2(E)

. (68)

Applying the property

∀E ∈Mh,
∥∥∥ΨI − Π0,E

0 ΨI

∥∥∥
L2(E)

≤
∥∥∥ΨI − Π0,E

0 Ψ
∥∥∥

L2(E)
,

(52) and (54) to (68), we obtain∑
E∈Mh

(
f,ΨI − Π0,E

0 ΨI

)
E
≤ Ch |f |H1(Ω)

∑
E∈Mh

∥∥∥ΨI − Π0,E
0 Ψ

∥∥∥
L2(E)

≤ Ch |f |H1(Ω)

∑
E∈Mh

(
‖ΨI −Ψ‖L2(E) +

∥∥∥Ψ− Π0,E
0 Ψ

∥∥∥
L2(E)

)
≤ Ch |f |H1(Ω)

(
h2 |Ψ|2 + h ‖Ψ‖H1

0(Ω)

)
. (69)

We can omit higher order terms and apply (65), obtaining∑
E∈Mh

(
f,ΨI − Π0,E

0 ΨI

)
E
≤ Ch2 |f |H1(Ω) ‖U − u‖L2(Ω) . (70)

Finally, we have to bound ah (u,ΨI)− a (u,ΨI). Then, applying the orthog-
onality property of Π0,E

`(E), adding and subtracting terms, we have

ah (u,ΨI)− a (u,ΨI) =
∑
E∈Mh

(
Π0,E
`(E)∇u,∇ΨI

)
E
− (∇u,∇ΨI)E

=
∑
E∈Mh

(
Π0,E
`(E)∇u−∇u,∇ΨI − Π0,E

0 ∇ΨI

)
E

=
∑
E∈Mh

(
Π0,E
`(E)∇u− Π0,E

`(E)∇U,∇ΨI − Π0,E
0 ∇ΨI

)
E

+
(

Π0,E
`(E)∇U −∇U,∇ΨI − Π0,E

0 ∇ΨI

)
E

+
(
∇U −∇u,∇ΨI − Π0,E

0 ∇ΨI

)
E
.

(71)
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Notice that, applying (52) and (53), we have the property ∀E ∈Mh:∥∥∥∇ΨI − Π0,E
0 ∇ΨI

∥∥∥
L2(E)

≤
∥∥∥∇ΨI − Π0,E

0 ∇Ψ
∥∥∥

L2(E)
≤ Ch |Ψ|2,E .

Therefore, applying the continuity of the projection operator and (64), the
first and the last term of (71) can be bounded as∑
E∈Mh

(
Π0,E
`(E)∇u− Π0,E

`(E)∇U,∇ΨI − Π0,E
0 ∇ΨI

)
E

+
(
∇U −∇u,∇ΨI − Π0,E

0 ∇ΨI

)
E

≤ Ch ‖U − u‖H1
0(Ω) ‖U − u‖L2(Ω) .

(72)
Similarly, the second term is bounded as∑
E∈Mh

(
Π0,E
`(E)∇U −∇U,∇ΨI − Π0,E

0 ∇ΨI

)
E
≤ Ch2 |U |2 ‖U − u‖L2(Ω) . (73)

Finally, applying (67), (70), (72) and (73) to (66) and simplifying, we obtain

‖U − u‖L2(Ω) ≤ C
(
h ‖U − u‖H1

0(Ω) + h2 |f |H1(Ω) + h2 |U |2
)
.

Applying the H1-estimate (Theorem 3) we obtain the relation (63).

Remark 8. Denoting by Π0,E
1 the L2-projector from L2(E) to P1(E), we can

define the discrete problem (11) as

ah (u, v) =
∑
E∈Mh

(
f,Π0,E

1 v
)
E
∀v ∈ V1,` ,

and we can require f ∈ L2(Ω) so (63) still holds as

‖U − u‖L2(Ω) ≤ Ch2
(
|U |2 + ‖f‖L2(Ω)

)
.

Remark 9 (Extension to more general elliptic problems). Consider the fol-
lowing diffusion-reaction model:{

−∆U + U = f in Ω ,

U = 0 on ∂Ω .
(74)
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Table 1: Sufficient `(E) for regular polygons up to 24 edges

NV
E 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24

`(E) 0 1 2 3 4 5 6 7 8 9 10 11
ˇ̀(NV

E ) 0 1 1 2 2 2 3 3 3 3 4 4

Table 2: Sufficient `(E) for non-regular convex polygons up to 24 edges

NV
E 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24

`(E) 0 1 1 2 2 2 3 3 3 3 4 4
ˇ̀(NV

E ) 0 1 1 2 2 2 3 3 3 3 4 4

The coercivity of the bilinear form defined by (9) and (10) allows us to dis-
cretize it as: find u ∈ V1,` such that

ah (u, v) +
∑
E∈Mh

(
Π0,E

0 u,Π0,E
0 v

)
E

=
∑
E∈Mh

(
f,Π0,E

0 v
)
E
∀v ∈ V1,` . (75)

If `(E) satisfies (14) locally on each polygon, we can prove the well-posedness
of (75) following [2, Lemma 5.7]. Optimal order a priori error estimates can
be proved as in [2, Theorem 5.1 and 5.2], using the interpolation result given
by Lemma 7. In Section 6.2.3 we assess numerically the validity of such
results.

6. Numerical Results

This section is devoted to assess the theoretical results reported previ-
ously. First, we consider single polygons and investigate numerically which
is the minimum degree `(E) providing coercivity, then we carry out some
convergence tests.

6.1. Coercivity tests

To test numerically the coercivity of the bilinear form aEh , we consider a
set of polygons and we perform for each of them Algorithm 1 which returns

Table 3: Sufficient `(E) for polygons with aligned edges up to 24 edges (built on the
non-regular convex triangle)

NV
E 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24

`(E) 0 1 2 2 3 4 4 5 6 6 7 8
ˇ̀(NV

E ) 0 1 1 2 2 2 3 3 3 3 4 4
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Table 4: Sufficient `(E) for polygons with aligned edges up to 24 edges (built on the
non-regular convex hexagon)

NV
E 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24

`(E) 1 2 2 2 3 3 3 3 4 4
ˇ̀(NV

E ) 1 2 2 2 3 3 3 3 4 4

the minimum `(E) that ensures numerically the local coercivity. In view of
Theorem 1, we define, for any E ∈Mh,

ˇ̀(NV
E ) as the smallest l such that (l + 1)(l + 2) ≥ NV

E − 1 .

Notice that Theorem 1 implies that the minimum `(E) that is sufficient to
obtain local coercivity on E satisfies `(E) ≥ ˇ̀(NV

E ). In the following, we
compute numerically the minimum `(E) that induces the coercivity of the
stiffness matrix for several sequences of polygons.

In Table 1 we display ˇ̀(NV
E ) and the minimum `(E) computed by Algo-

rithm 1 for regular polygons of n vertices having vertices xi =
(

cos
(

(i−1)2π
n

)
sin
(

(i−1)2π
n

))
,

i ∈ {1, . . . , n}. We can see that for these polygons the value of `(E) provided
by the algorithm corresponds to the one that we obtain if we use harmonic
polynomials only (see [30]). This suggests that for regular polygons the pro-
posed method seems to be stable if and only if the projection space contains
the gradients of harmonic polynomials.

On the other hand, if we consider a sequence of non-regular convex poly-
gons, the results in Table 2 suggest that we can take `(E) = ˇ̀(NV

E ). The
vertices of such polygons are generated by sampling random points on a cir-
cle of radius 1 and imposing that the ratio of each edge and the diameter of
the circle is ≥ 0.1.

A third test considers a sequence of polygons with aligned edges obtained
starting from a non-equilateral triangle and then progressively splitting its
edges into equal parts one at a time until all three edges are split into eight
equal parts, thus generating a sequence of polygons up to 24 edges. In Table 3
we can see how the sufficient `(E) that guarantees coercivity in this case is
inside the range given by ˇ̀(NV

E ) and the sufficient `(E) obtained for regular
polygons.

A similar test is reported in Table 4, where the same procedure has been
applied to a non-regular hexagon. We can see that in this case ˇ̀(NV

E ) is
sufficient.
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Lastly, we consider a sequence of polygons that are non convex. To
generate this sequence, we start from the quadrilateral considered in the
second test (Table 2), add the edge midpoints as vertices and move them
towards its barycenter xC with the transformation S(x) = (1 − α)x + αxC ,
thus obtaining a sequence of non-convex octagons. We select four polygons
by choosing α ∈ {0, 0.2, 0.4, 0.6}, larger is α smaller is the radius of the
inscribed ball. In all these cases, the sufficient `(E) that guarantees coercivity
is ˇ̀(8) = 2.

Finally, for each polygon we compute the (NV
E − 1)-th from largest to

smallest eigenvalue of the local stiffness matrix AE, denoted by σNV
E−1 ,

using the value of `(E) provided by Algorithm 1; σNV
E−1 6= 0 ensures the

rank of the stiffness matrix be equal to NV
E − 1. In Figure 1, we depicted the

(a) Convex polygons (b) Concave polygons

Figure 1: Values of the √σNV
E −1 for polygons analyzed in Section 6.1.

square root of σNV
E−1 for all polygons considered in this section, these values

are a numerical approximation of the local coercivity constant. Notice that
the value of `(E) can be different for polygons with the same NV

E , for each
polygon `(E) is written in Tables 1, 2, 3 and 4.

The coordinates of all polygons considered in this section, except for the
regular ones, are provided as supplementary materials to the paper.

6.2. Convergence tests

Let us consider problem (1) on the unit square with homogeneous Dirich-
let boundary conditions and the right-hand side defined such that the exact
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solution is
Uex = sin(2πx) sin(2πy).

In the following, we show, in log-log scale plots, the convergence curves of
the L2 and H1 errors that we measure respectively as follows,

L2 error =

√ ∑
E∈Mh

∥∥∥Π∇,E1 u− Uex
∥∥∥2

L2(E)
,

H1 error =

√ ∑
E∈Mh

∥∥∥∇Π∇,E1 u−∇Uex
∥∥∥2

L2(E)
,

where u is the discrete solution of (11). Then, for each polygon E ∈ Mh

we choose `(E) such that the sufficient condition (14) is satisfied, as detailed
below.

6.2.1. Meshes

We consider four sequences of meshes for the convergence test. The first
sequence, labeled Hexagonal, is a tesselation made by hexagons and triangles,
as it is shown in Figure 2a. For this mesh, Algorithm 1 `(E) = 0 on triangles
and `(E) = 2 on hexagons. The second sequence, shown in Figure 2b and
labeled Octagonal, is made by octagons, squares and triangles. It results
`(E) = 0 on triangles, `(E) = 1 on squares, `(E) = 2 on octagons. Then, the
third sequence, labeled Hexadecagonal, is made by hexadecagons and concave
pentagons, as it is shown in Figure 2c. It results `(E) = 1 on the concave
pentagons and `(E) = 3 on hexadecagons. Finally, the last sequence, labeled
Star Concave, is a non-convex tessellation made by octagons and nonagons,
as it is shown in Figure 2d. By Algorithm 1, `(E) = 3 on octagons and
`(E) = 2 on nonagons. In each case we start from a mesh of #Mh polygons
then we refine it, obtaining meshes made by 4#Mh, 16#Mh and 64#Mh

polygons. The first and the third sequence start with #Mh equal to 320,
the second and the fourth with #Mh equal to 164 and 192 respectively.

6.2.2. Convergence results

For the four mesh sequences, we report the trend of the H1 and the L2

errors in Figures 3a and 3b, respectively, decreasing the maximum diameter
of the polygons. In the legends, we report the computed convergence rates
with respect to h, denoted by α. We see that we get the expected values for
all the meshes, as obtained in (55) and (63).
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(a) Hexagonal (b) Octagonal

(c) Hexadecagonal (d) Star Concave

Figure 2: Meshes

6.2.3. Convergence of diffusion-reaction discrete problem

We finally report, in Figure 4, the H1 and L2 errors obtained for the four
mesh sequences when solving (74) using the discrete formulation (75). We
can see that the convergence rates α reported in the legends are optimal.

7. Conclusions

In this work, we present a structure-preserving Virtual Element formu-
lation, where the bilinear forms involve only polynomial projections in the
definition. We discuss a general proof of well-posedness of the lowest order
method applied to the Poisson problem, identifying a sufficient condition.
Then, we propose an algorithm to numerically ensure the stability of the pro-
posed scheme, that exploits an incremental QR factorization, and we derive
optimal a-priori error estimates. Numerical tests on convex and non-convex
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(a) H1 error (b) L2 error

Figure 3: Logarithmic convergence plots

polygons show the robustness of the method and assess the expected rate of
convergence.
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(a) H1 error (b) L2 error

Figure 4: Logarithmic convergence plots for diffusion-reaction model
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Appendix A. Notation Table

Geometry
E generic polygon
xC centre of the ball with respect to which E is star-shaped
TE triangulation of E obtained linking each vertex of E to xC
IE edges of TE internal to E

Operators
γ∂E trace operator on ∂E
J·Ke jump operator over an edge e

Polynomial projectors
Pk(E) space of polynomials defined on E up to degree k

Π∇,E1 H1 orthogonal projector on P1(E)
P0 projection operator onto the space of constants

Π0,E
` ∇ L2(E) orthogonal projector of gradients on [P`(E)]2

Local spaces

VE1,l

v ∈ H1(E) : ∆v ∈ Pl+1(E) , γe(v) ∈ P1(e) ∀e ∈ EE,

v ∈ C0(∂E) , (v, p)E =
(

Π∇,E1 v, p
)
E
∀p ∈ Pl+1(E)


Pker
l (E)

{
p ∈ [Pl(E)]2 :

∫
∂E
p · n∂Eγ∂E(v − P0(v)) = 0 ∀v ∈ VE1,l

}
H1
T(E)

{
v ∈ L2(E) : v|τ ∈ H1(τ) ∀τ ∈ TE

}
V (E) {v ∈ [L2(E)]

2
: v|τ ∈ Hdiv(τ) ∀τ ∈ TE, JvKei ∈ L∞(ei) ∀ei ∈ IE}

Q(∂E) span
{
γ∂E(ψi − P0(ψi)) ∀i = 1, . . . , NV

E − 1
}

where ψi are basis func-
tions of V (E)

RQ(E)
{
q̄ ∈ L2(E) : q̄|τ ∈ P1(τ) ∀τ ∈ TE, γ∂E(q̄) ∈ Q(∂E), q̄(xC) = 0

}
Norms

‖q̄‖2
H1
T(E) ‖q̄‖

2
L2(E) +

∑
τ∈TE
‖∇q̄‖2

[L2(τ)]2 +
NV
E∑

i=1

∥∥Jq̄Kei∥∥2

L2(ei)

‖v‖2
V (E) ‖v‖

2
[L2(E)]2 +

∑
τ∈TE
‖∇ · v‖2

L2(τ) +
∥∥JvKIE∥∥2

L∞(IE)

Appendix B. Proof of Lemma 4

In order to show the proof, we have to present a preliminary result.
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Lemma 9. Let q̄ ∈ RQ(E). Then ∃C > 0, independent of hE, such that

NV
E∑

i=1

|q̄(xi)| ≤ C

√∑
τ∈TE

‖∇q̄‖2
L2(τ) . (B.1)

Proof. We notice that

NV
E∑

i=1

|q̄(xi)| =
1

2

∑
τ∈TE

(|q̄(xτ,1)|+ |q̄(xτ,2)|) , (B.2)

where xτ,1 and xτ,2 are the vertices of τ that are on ∂E. We have that

q̄|τ ∈ P̃1(τ) = {p ∈ P1(τ) : p(xC) = 0} ,

and
|q̄(xτ,1)|+ |q̄(xτ,2)| =

∥∥∥dof P̃1(τ)

(
q̄|τ
)∥∥∥

l1
,

having chosen the values at xτ,1 and xτ,2 as set of degrees of freedom on P̃1(τ)
and denoting by dof P̃1(τ) (·) the operator returning the vector of such values.
Using the mapping (18) we get∥∥∥dof P̃1(τ)

(
q̄|τ
)∥∥∥

l1
=
∥∥∥dof P̃1(τ̂)

(
ˆ̄q|τ̂
)∥∥∥

l1
.

The right-hand side of the above equation is a norm on P̃1(τ̂), as well as∥∥∥∇̂ˆ̄q
∥∥∥

L2(τ̂)
. Then, by standard arguments about the equivalence of norms in

finite dimensional spaces, we have

∥∥∥dof P̃1(τ̂)

(
ˆ̄q|τ̂
)∥∥∥

l1
≤

√
2 maxi=1,2

∥∥∥dof P̃1(τ̂) (χ̂i)
∥∥∥
l1

minŵ∈P̃1(τ̂) : ŵ(x̂τ̂ ,1)2+ŵ(x̂τ̂ ,2)2=1

∥∥∥∇̂ŵ∥∥∥
L2(τ̂)

∥∥∥∇̂ˆ̄q
∥∥∥

L2(τ̂)
,

where the χ̂i are Lagrangian in the degrees of freedom. Then,
∥∥∥dof P̃1(τ̂) (χ̂1)

∥∥∥
l1

=∥∥∥dof P̃1(τ̂) (χ̂2)
∥∥∥
l1

= 1 and

∥∥∥dof P̃1(τ̂)

(
ˆ̄q|τ̂
)∥∥∥

l1
≤

√
2

minŵ∈P̃1(τ̂) : ŵ(x̂τ̂ ,1)2+ŵ(x̂τ̂ ,2)2=1

∥∥∥∇̂ŵ∥∥∥
L2(τ̂)

∥∥∥∇̂ˆ̄q
∥∥∥

L2(τ̂)
.
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It can be proved by standard arguments that the constant in the above
inequality is continuous with respect to τ̂ , since it depends continuously on
the deformation of the domain (see the proofs of [25, Lemma 4.9] and [29,
Lemma 4.5]). It follows by compactness of the set of admissible reference
elements, denoted by Σ, (Lemma 3) that there exists M > 0 such that

M = max
τ̂∈Σ

√
2

minŵ∈P̃1(τ̂) : ŵ(x̂τ̂ ,1)2+ŵ(x̂τ̂ ,2)2=1

∥∥∥∇̂ŵ∥∥∥
L2(τ̂)

,

and thus, starting again from (B.2) and applying the mapping (18), we get

NV
E∑

i=1

|q̄(xi)| =
1

2

∑
τ∈TE

∥∥∥dof P̃1(τ)

(
q̄|τ
)∥∥∥

l1
=

1

2

∑
τ̂∈TÊ

∥∥∥dof P̃1(τ̂)

(
ˆ̄q|τ̂
)∥∥∥

l1

≤ M

2

∑
τ̂∈TÊ

∥∥∥∇̂ˆ̄q
∥∥∥

L2(τ̂)
=
M

2

∑
τ∈TE

‖∇q̄‖L2(τ) ≤
M
√
NV
E

2

√∑
τ∈TE

‖∇q̄‖2
L2(τ) ,

and we obtain (B.1) since NV
E is uniformly bounded by (4).

Now, we can present the proof of Lemma 4.

Proof. Let q̄ ∈ RQ(E) and v ∈ V (E) be given. Starting from (25) and
applying the triangular inequality, we have

|b(q̄,v)| ≤

∣∣∣∣∣∑
τ∈TE

∫
τ

[∇q̄ v + q̄∇ · v] dx

∣∣∣∣∣+

∣∣∣∣∣∣
NV
E∑

i=1

∫
ei

γei(q̄) JvKei · n
eids

∣∣∣∣∣∣ . (B.3)

Let us consider separately the two terms involved in the inequality. The first
part can be analyzed applying the property,

∀q̄ ∈ RQ(E),
∑
τ∈TE

(
‖q̄‖L2(τ) + ‖∇q̄‖[L2(τ)]2

)
≤
√

2NV
E ‖q̄‖H1

T(E)
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and the mesh assumption (4), as follows∣∣∣∣∣∑
τ∈TE

∫
τ

[∇q̄ v + q̄∇ · v] dx

∣∣∣∣∣ ≤ ∑
τ∈TE

(
‖∇q̄‖[L2(τ)]2 ‖v‖[L2(τ)]2 + ‖q̄‖L2(τ) ‖∇ · v‖L2(τ)

)
≤ C

∑
τ∈TE

(
‖v‖[L2(τ)]2 + ‖∇ · v‖L2(τ)

)
×
(
‖∇q̄‖[L2(τ)]2 + ‖q̄‖L2(τ)

)
≤ C ‖q̄‖H1

T(E)

∑
τ∈TE

(
‖v‖[L2(τ)]2 + ‖∇ · v‖L2(τ)

)
.

Moreover, let us consider the second term of (B.3), computing exactly the
term ‖γei(q̄)‖L2(ei)

and applying the properties ∀v ∈ V (E)

NV
E∑

i=1

∥∥JvKei∥∥L2(ei)
≤
√

2NV
E

√√√√NV
E∑

i=1

∥∥JvKei∥∥2

L2(ei)
,∥∥JvKei∥∥2

L2(ei)
≤ hE

∥∥JvKIE∥∥2

L∞(IE)
, ∀ei ∈ IE ,

we have∣∣∣∣∣∣
NV
E∑

i=1

∫
ei

γei(q̄) JvKei · n
eids

∣∣∣∣∣∣ ≤
NV
E∑

i=1

‖γei(q̄)‖L2(ei)

∥∥JvKei · nei∥∥L2(ei)

≤
NV
E∑

i=1

√
hei√
3
|q̄(xi)|

∥∥JvKei∥∥[L2(ei)]
2 ≤

hE√
3

∥∥JvKIE∥∥L∞(IE)

NV
E∑

i=1

|q̄(xi)|

≤ ChE
∥∥JvKIE∥∥L∞(IE)

‖q̄‖H1
T(E) ,

where we apply Lemma 9 in the last step. Finally, substituting into (B.3),
we obtain

|b(q̄,v)| ≤ C ‖q̄‖H1
T(E)

(∑
τ∈TE

(
‖v‖[L2(τ)]2 + ‖∇ · v‖L2(τ)

)
+ hE

∥∥JvKIE∥∥L∞(IE)

)
≤ C ‖q̄‖H1

T(E) ‖v‖V (E) .
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