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Lowest order stabilization free Virtual Element Method
for the 2D Poisson equation

Stefano Berrone®!, Andrea Borio®!, Francesca Marcon®!*

? Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi
24, Torino, 10129, Italy

Abstract

We analyze the first order Enlarged Enhancement Virtual Element Method
(E2VEM) for the Poisson problem. The method allows the definition of bilin-
ear forms that do not require a stabilization term, thanks to the exploitation
of higher order polynomial projections that are made computable by suitably
enlarging the enhancement property (from which comes the prefix E?) of lo-
cal virtual spaces. We provide a sufficient condition for the well-posedness
and optimal order a priori error estimates. We present numerical tests on
convex and non-convex polygonal meshes that confirm the robustness of the
method and the theoretical convergence rates.

Keywords: Virtual Element Methods, Poisson problem, polygonal meshes
65N12, 656N15, 65N30

1. Introduction

Virtual Element Methods (VEM) are polygonal methods for solving par-
tial differential equations, that were first introduced in primal conforming
form in [I] and were later on applied to most of the relevant problems of
interest in applications, such as advection-diffusion-reaction equations [2],
elastic and inelastic problems [3], parabolic and hyperbolic problems [4] [5],
simulations in fractured media [0, [7]. Standard VEM discrete bilinear forms
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are characterized by the presence of an arbitrary non-polynomial stabilizing
term that ensures the coercivity and that requires to be tuned depending
on the problem analyzed. This arbitrarity of the discrete forms could be
an issue, for instance, in the derivation of a posteriori error estimates [8, O],
where the stabilization term is always at the right-hand side when bounding
the error in terms of the error estimator, both from above and from below.
Moreover, the isotropic nature of the stabilization term becomes an issue
when devising SUPG stabilizations [10, [I1], in problems with anisotropic co-
efficients, or in the derivation of anisotropic a posteriori error estimates [12]
or in complex non-linear problems [I3]. Finally, we mention [I4] where it has
been shown the sensitivity of the solution of eigenvalue problems to variable
parameters included in the discretization matrices.

Recently, the definition of VEM formulations that do not require an ar-
bitrary non-polynomial stabilization term has received special interest. In
particular, a preliminary version of this work has been made available to
the scientific community as a preprint [15], and recent works developed and
applied this approach to various problems such as linear and non-linear elas-
ticity [16, 17, [I8] and eigenproblems [19]. Moreover, in [20] a stabilization-free
VEM formulation has been proposed for advection-diffusion problems in the
advection-dominated regime and in [2I] a comparison between the proposed
method and standard Virtual Elements from [2] has been done, showing that
the new formulation can induce smaller errors in the case of anisotropic dif-
fusion tensors, due to the isotropic nature of the stabilization.

In this work, we analyze the Enlarged Enhancement Virtual Element
Methods (E*VEM), designed to allow the definition of a coercive bilinear
form that involves only polynomial projections. In this framework, it is
not required to add an arbitrary stabilizing bilinear form accounting for the
non polynomial part of VEM functions. The method is based on the use of
higher order polynomial projections in the discrete bilinear form with respect
to the standard one [2] and on a modification of the VEM space to allow the
computation of such projections. In particular, we extend the enhancement
property that is used in the definition of the VEM space ([22], [2]), without
changing the set of degrees of freedom. The degree of polynomial enrichment
is chosen locally on each polygon, such that the discrete bilinear form is
coercive.

The proof of well-posedness is quite elaborate, thus in this paper we deal
only with the lowest order formulation and, for the sake of simplicity, we
focus on the two dimensional Poisson’s problem with homogenous Dirichlet



boundary conditions, the extension to general boundary conditions being
analogous to what is done for classical VEM. Moreover, the formulation and
proofs presented in this work can also be easily extended to the case of a non
constant anisotropic diffusion tensor.

The outline of the paper is as follows. In Section [2| we state our model
problem. In Section |3| we introduce the approximation functional spaces and
projection operators and we state the discrete problem. Section [4| contains
the discussion about the well-posedness of the discrete problem under suitable
sufficient conditions on the local projections. In Section [5| we prove optimal
order a priori error estimates. Finally, Section [ contains some numerical
results assessing the rates of convergence of the method.

Throughout the work, (-,-), denotes the standard L? scalar product de-
fined on a generic w C R?, 4% denotes the trace operator, that restricts on
the boundary dw an element of a space defined over w C R2 Inside the
proofs, we decide to use a single character C for constants, independent of
the mesh size, that appear in the inequalities, which means that we suppose
to take at each step the maximum of the constants involved. Since the proofs
require the definition of several auxiliary spaces and operators, we provide

in a table containing a summary of the relevant definitions.
2. Model Problem

Let Q C R? be a bounded open set. We are interested in solving the
following problem:

1
U=0 on 0. 1)

Defining a: HY) x H{(Q) — R such that,
a (U,W) = (VU, VW), YU,W € HYQ), 2)

{—AU —f inQ,

then, given f € LA), the variational formulation of is given by: find
U € H{(Q) such that,

a(UW)=(f,W), YW eH|Q). (3)

3. Discrete formulation

In order to define the discrete form of , M, denotes a conforming
polygonal tessellation of ) and E denotes a generic polygon of M. #Mj;



denotes the number of polygons of M; and the maximum diameter of all

the polygons in My is denoted by h. Fixed E € My, let {xz}f\;’% be its
N} vertices counter clockwise ordered, £, the set of its edges and n% the
outward-pointing unit normal vector to JFE. We assume that M, satifies the
standard mesh assumptions for VEM (see for instance [23], 24]), i.e. Ix > 0
such that

1. for all F € M,, FE is star-shaped with respect to a ball of radius
p > khg, where hg is the diameter of E;

2. for all edges e C OF, |e| > khg.

Notice that the above conditions imply that, denoting by Ny the number of
vertices of F, it holds

INY . >0:YE € My, Ny < NY._. (4)

max

For any given E € My, let P,(E) be the space of polynomials of degree
up to k defined on E. Let I} : H(E) — P,(E) be the HY(E)-orthogonal
operator, defined up to a constant by the orthogonality condition: Vu €
HY(E),

<V (HY’EU — u> ,Vp)E =0 VpeP,(E). (5)

In order to define Hlv’E uniquely, we choose any continuous and linear pro-
jection operator Py : H(E) — Py(E), whose continuity constant in H'-norm
is independent of hr and continuous with respect to deformations of the
geometry, and we impose Vu € HY(E),

Po(I1Y Pu — u) = 0. (6)

Remark 1. Under the current mesh assumptions, a suitable choice for Py
15 the integral mean on the boundary of E, i.e.

Po(u) := ]8_1E| /’yaE(u) ds Yu € HY(E).
OF

Notice that this is a common choice, see for instance [Z].



For any given E € My, let [ € N be given, as detailed in the next section,
where we will choose | depending on N (see Theorem (1| and Section .
Let ENfl be the set of functions v € HY(E) satisfying

(v.p)p = (7 7v,p)  Vp € Py (B) . (7)
We define the Enlarged Enhancement Virtual Space of order 1 as
Vi ={ve ENfl : Av €P(E), v°(v) €Pi(e) Ve € &y, veCY(OE)}.

We define as degrees of freedom of this space the values of functions at the
vertices of E (see [1, 2]).

Moreover, let £ € N#Mn be a vector and ((E) denote the element corre-
sponding to the polygon E, we define the global discrete space as

Vie={veH(Q): vyp € VEZ(E)}.

Note that v € V, , is a continuous function that is a polynomial of degree 1
on each edge of the mesh.

To define our discrete bilinear form, let II"*V : H(E) — [P)(E))* be
the L E)-projection operator of the gradient of functions in H{(E), defined,
Vu € HY(E), by the orthogonality condition

<H?’EVu,p>E = (Vu,p), Vp € [P(B)) . (8)

Remark 2. For each function u € Vfl, the above projection is computable
given the degrees of freedom of u, applying the Gauss-Green formula and

exploiting .
Let af: H(E) x H(E) — R be defined as

af (u,v) := (HEEE)VU, H?ég)Vv)E Vu,v € H(E), 9)
and a,: H(Q) x H(Q) — R as
ay, (u,v) := Z ap (u,v)  Vu,v € Vy,. (10)
EeMy

We state the discrete problem as: find u € V), , such that

ay, (u,v) = Z (f, Hg’EU>E Yo eV, (11)

EeMy,



where, VE € My, Hg’E: LXE) — R is the L{ E)-projection, defined by
1
1" = 7 (v,1), Yo e LAE). (12)
The above projection is computable for any given v € Vfl exploiting .

4. Well-posedness

This section is devoted to prove the well-posedness of the discrete problem
stated by , under suitable sufficient conditions on £. The main result is
given by Theorem (1) that implies the existence of an equivalent norm on V, ,

and the well-posedness of .
First, we define, for any given [ € N,

P = {pe BB s [ pon? - P =0 voe V)

(13)

Notice that the dimension of P;'(E) generally depends on the geometry

of the polygon and the definition of Py, but in Section we provide an al-

gorithm for enforcing the sufficient condition that is assumed in the following
Theorem.

Theorem 1. Let E € M, u € VfE(E) and ((E) € N such that the following
condition is satisfied:

(L(E) +1)(U(E) +2) — dim P (E) > Ny — 1, (14)

then
My Vu =0 = Vuy, = 0. (15)

We omit in the following the proof of the case of triangles (N} = 3
and ¢((E) = 0), indeed if F is a triangle, V%, = P,(E) Y/(E) > 0, and
then HSE%VU = Vu V{(E) > 0. Moreover, an explicit computation yields
dim P (E) = 0 if E is a triangle. For technical reasons, the proof of The-
orem [l for a general polygon is split into two results, described in Sections
and respectively. The proof relies on an auxiliary inf-sup condition
that is proved by constructing a suitable Fortin operator, whose existence is
guaranteed under condition (|14)).



4.1. Auziliary inf-sup condition

In this section, after some auxiliary results, we prove through Proposi-
tion (1| that is satisfied if the auxiliary inf-sup condition holds true.

Lemma 1. Let u € Vfl, with 1 > 0. Then
IPVu =0 = I, "u € Py(E).
Proof. Applying , we have
MPTu =0 = (Vu,p), =0 Vp € [P(E)],

that implies
(Vu,Vp)p =0 Vp € Py(E), (16)

thanks to the relation VP, (E) C VP,,,(E) C [P/(E)]*. Given and (),

(VHIV’EU, Vp>E —0 VpeP,(E) = VIVPu=0

— 1Y "u e Py(E).

Lemma 2. Let u € V. If 175Vu =0, then (@) can be rewritten as

(u’p)E:PO (U)-(l,p)E VPGPZ—H(E)’ (17>
where Py is the projection operator defined in Section [3
Proof. Applying Lemma (1| and @,
N°Vu =0 = II)""u =Py (u).

Then, provides . [

We now need to introduce some notation and definitions. First, let Tg
denote the sub-triangulation of E obtained linking each vertex of E to the
centre of the ball with respect to which F is star-shaped, denoted by x¢.
Let us define the set of internal edges of the triangulation 7z as Zg. For
any i = 1,..., N}E{, let 7; € Tg be the triangle whose vertices are x;, x;y1
(with Tny4r = x1) and z¢. Let e; denote the edge Tox, € Ip and by n
the outward-pointing unit normal vector to the edge e; of 7;. Then, for each
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polygon E, we can define the reference polygon E, such that the mapping
F: E — FE is given by
ZE:hE@—FSUC- (18>

Let X be the set of all admissible reference polygons, i.e. satisfying the mesh
assumptions with the same regularity parameter as the polygons in the mesh.

Lemma 3 (|25, Proof of Lemma 4.9]). ¥ is compact.
Definition 1. Let HI{E) be the broken Sobolev space

HH{E) :={v e LAE): v, e H(1) VT € Tp} .
Let u € H{E), we define Ve; € I the jump function [-], : HAE) — L¥e;)

such that
[ul,, ==~ (u,, ) =7 (uln_1> :

Moreover, [[u]]ZE denotes the vector containing the jumps of u on each e; € L.
We endow HI{E) with the following seminorm and norm : Yu € H{E),

Ny
2 2 2
|“|H§4E) = § HV“”[L2(T)]2 + § Hﬂ“ﬂez L2(ey) ’ (19)
T€TE =1
2 2 2
||U||H§4E) = |u|H%.(E) + ||u||L2(E) : (20)

Definition 2. Let V (E) be given by

V(E) :={v e [L}E)]* : v, € H™r) V7 € Tg, [v],, € L>(e;) Ve; € I}
(21)
Then Yv € V (E), we define its seminorm and its norm:

2 2 2
’IU’V(E) = Z HV'UHLz(T) +h |||IIU]]IEHL00(IE)7
TETE
2 2 2
101V ) = [vlv@) + [[Vl[mye

where

H [[IU]]IE ||L00(IE) = l:?:la’);[}s/ H IIIU]]ei

Loo(es) -

Remark 3. Let us note that [P,(E))* C V (E). Hence, we can use M1y (g as
a norm for [P,(E)]?. Notice that, since [P;(E)]* C [C°(E)]?,
0, vp € [P(E))" .

IIp]]IE HLOO(IE) -



Definition 3. Let Vfipo be the space
Vi = {v e VE  Po(v) = 0}. (22)

14
Definition 4. Denoting by {wz}ivjl the set of Lagrangian basis functions of
V), let Q(OE) be the vector space

Q(OF) :=span {v"*(¢; — Po(¢y))}, Vi=1,...,Nyp—1.  (23)

We remark that the above space is made up of continuous piecewise linear
polynomials on each edge. Notice that Vq € Q(OF), Jlv € Vfl’PO such that

q=7""(v).
Definition 5. Let Rg(E) be the vector space, lifting of Q(OF) on E, given
by:

Ro(E) :={g€ LAE): g, € P,(7) V7 € T, 7°¥(q) € Q(OE), q(zc) = (2} |
24

We note that Ro(F) C HH{E) N C°(E). Hence, we use the norm -l )
v

defined in as a norm for Ro(E). Notice that jVZE:l H[[q_]]ez'”LQ(ei) =0. Let
{rj}jyfvl_l denote a basis of Ro(FE). )

Now, we can introduce the bilinear form b which is used in Proposition [I}

Definition 6. Let b : Rg(F) x V (E) — R, such that Vq € Ro(E), Vv €
V(E)

Z/qu—l—qv v| dx — Z/ q) [v]., -nds.  (25)

TETE

Remark 4. In the following, for any given § € Ro(FE) we use b(g,v) when
v is a polynomial or a function of the H(div; E')-conforming VEM space [20].
In these cases, an application of the divergence theorem gives

b((j,v):/(jv-naEds VqgeRo(E).
oF



The following lemma gives the continuity of the bilinear form b.

Lemma 4. Let b be given by . Then b is a bilinear form and 3C, > 0
independent of hg such that

b(7,v) < Cy l|qllgs gy l10lly ) VT € Ro(E), Vv e V(E) .

Proof. The proof of this lemma can be found in [Appendix B} O
The following proposition is the first step towards the proof of Theorem I}

Proposition 1. Let b denote the continuous bilinear form defined by .
If 38 > 0, independent of hg, such that

b(a
Vg€ Ro(FE), sup M

> Bl s » (26)
pe[P(E))? HpHV(E) HrE)

then holds true.
Proof. Let u € Vfl, yields,

I*Vu=0 = (Vu,p); =0 Vp € [P(E)]*.
Applying Gauss-Green formula, the previous relation becomes

(Vu,p)p = (7" (), p-n"%),, = (u,V -p)p =0 Vp € [B(E)].
Since V -p € P,_,(E) we apply and we obtain
(77 () . p - n) = Po (u) - (1,V - p); = 0 Vp € [B(E)]”.

Then we can apply the divergence theorem and find the relation

(v?#(u =Py (u)),p-n"),, =0 Vp € [B(E)]". (27)

We have ¢ = 7%P(u— Py (u)) € Q(IE) (Q(IE) defined in (23)). Let g €
Ro(E) be the lifting of ¢ (Ro(E) defined in (24)), then the relation (27),

applying the divergence theorem, is
b(@,p) =0 Vp € [B(E)].

Then, since b is a continuous bilinear form, (26)) implies ¢ = 0. Finally, since
u € V{7, then u = Py (u) and Vu = VPq (u) = 0. O

10



4.2. Proof of the inf-sup condition

In this section we show that holds with £ independent of hr. The
proof relies on the technique known as Fortin trick [27], that consists in the
following classical result.

Proposition 2 ([27, Proposition 5.4.2]). Assume that there exists an oper-
ator g : V (E) — [Py(E)]? that satisfies, Vv € V (E),

b(q,llgv —v) =0 VG € Ro(F), (28)

and assume that there exists a constant Cr > 0, independent of hg, such
that

Mgvlly g < Cullvllyg YoeV(E). (29)
Assume moreover that 3n > 0, independent of hg such that
b
inf  sup (4, v) >. (30)

9€Ro(E) veV(E) HQHH%—(E) ||’U||V(E) B
Then the discrete inf-sup condition 1s satisfied, with = Cin

Remark 5. The inf-sup constant 3 in has to be independent of the mesh
size in order to guarantee that the constant in , inwvolved in the coercivity
of the bilinear form of , 1s independent of the mesh size.

Remark 6. The operator Ilg defined in the following is such that the con-
stant Cr; depends on NY . and on the continuity constant of Py, both are

bounded independently of hg by assumption.

Following the above results, we have to prove and to show the exis-
tence of the operator 11z satisfying and . In the following proposition
we achieve the first task.

Proposition 3. Let b: Rg(E) x V (E) — R be defined by [25). Then the
inf-sup condition holds true.

Proof. Let ¢ € Ro(E) be given arbitrarily. For any 7; € Tg, we recall that
the vertices of 7; are zc, x; = (75) and 241 = (ziiys ). Let €2 and ne
denote the edge z;x;, 1 and the outward-pointing unit normal vector to the

edge €2, respectively. Let !, ¢? € [Py(7;)]” be given such that

Ty — T4 T
@;(1,72) = (_ 2o )> L1, 1) = || n = (_ i+1.2 ~ Ti2 ) '

(551 — X1 (l'z‘+1,1 - l’i,l)

(31)

11



Let B(7;) := span{ep!, 2} C [Pi(n)]>. Notice that Vo € B?(r;) we have

V.-v =0 and Hv . ne?H ) is a norm on B?(7;). Indeed, if v € BY(r;)
L¥(e7

e?) = 0, then an explicit computation yields v = 0 on 7;.
L(ej

Moreover, let B?(Tg) := {v : v|, € B?(1) Vr € Tg} C V (E). Notice that
Vv € BY(Tg) we have that > . ||V - v|]i2 =0 and |jv- naEHL2 op) 1S @
norm on B?(7g). We define v* € B?(Tg) such that v*|9p - n%% =795 (q ) In

o
and H’U - nb

particular, V7; € Tp v*), = %gpi + ‘1|(”g| ;. Notice that ¢l s
|v* - n6E||L2(aE) and b(q,v*) = [, qu* - n°®. Then,
sup b(q, v) > b(q, v*) _ Jogavr-n®
veV(E HQHHT(E) HUHV HQHH%—(E) HU*HV(E) HqHH%.(E) H'U*HV(E) 39)
P
_ HQHLQ(ﬁE) H’U* n EHL2

B ||Q||H%—(E) ||'U*||V(E)

We have to estimate from below the last two factors. We notice that ||¢[|; 5
is a norm on Rg(FE), since ¢ € P,(Tg) and g(z¢) = 0. Thus, we can exploit
the equivalence of norms on finite dimensional spaces. Hence, regarding the
first norm, we get, by a scaling argument,

2
lalixom = D Il = he - ldllixe = Che Zrmm +||va

ecOE écoE [LA)
= Chg (Z hg? lallpa + HVQH[QLz(T)P) > Chpmin{1, hg"} lall i
T€TE
> Che llallf s -
(33)

Notice that the constant above is independent of the choice of reference
element by Lemma (3| The second norm is estimated using the definition of
dual norm and the trace inequality

1 3

12



as follows:

~ sup (’U n ’X)BE > sup ('U* 8E778E< ))3E
XELAIE) HXHL2(3E weHY(E) [7?F (w )HL2(8E)
. hil (v* - ndF 9B (y
> Chg*hg  sup P ( gl ))aE

weHY(E — 2 2
T (g2 ol e + Vel

||v* -n?" HL?(BE)

=

(34)
Let w* € H'(E) be such that

(VU)*,VQO)E + hE2 (w*,QO)E _ hEl ( * 8E’78E( ))3E '

Notice that @* = w*oF (F being the mapping defined by (18))) is the solution
of

(Vi ve) + (%, 9); = (8 n?975()) Vg e HY(E).
E E
Notice that

('0* %, 50F (i )) : (ﬁ*-naEwaE( )) :
sup _ oE _ oF

HeH(E) Hw”Hl(E) ||w*"H1(E)

This relation holds true since the greater than inequality is trivial using the
definition of sup and the less than inequality can be proved applying the
property of inner products |(z,y)|* < (z, ) (y,y), indeed

(67 n?, 47 (@)) (Var, Vi) + (%)
sup - 9L —  gqup 2B
HeH(E) ||w||H1(E) weHY(E) || g2 (E)
112 E
a1 sy _ ey _ (57 0)
" weHY(E) Hw”Hl(E) [l sy [@* [ 1115

13



Then, by choosing ¢ = w* and ¢ = w* in the equations above we get
— * — * 2 * 2
hE1 (U : 6E778E( ))3E > hE2 [Jw ||L2(E) +[[Vw ||[L2(E)]2

1
_ 2
S0+ [V0llgamye) (2 By + 190 )
1
2

sup
weH(E) (

1

[ Q(E)]2> 5

= (452 N0l + 190 ) = (10 gy + [0

o . ndE ~0E A*) (6*,71815 oF A>
:< A,v (@) 2% Aﬁ (@),
[@* ([ HeHY(E) [l )

( BE,’)/BE(U)))

Moreover, notice that the term sup
weHY(E)

— 0 then ©-n% = 0 and © = 0. Then,

9E is a norm on B?(Tg).

”'LUHHI(E)

( 8E 776E( ))5

Hanl(E)

Indeed, if sup

DeHY(E)
applying the above results to (34), recalling that > - ||V vHig(T) =0
Vo € B?(Tg), using the equivalence of norms on finite dimensional spaces
and a scaling argument, we get

(if* P AOF (@)

* . n0F 7% OF *% ~ K .
o7 o = Chete s S 2 e e I v
1
2
,1 9
= Chyg? (Z ||’U*||[L27)]2 —f-h H[[’U*]]IEHLOO(IE)>
T€TE

= Chg? HU*HV(E) )
(35)

where C' is independent of hg and of the choice of reference element by
Lemma . The proof is thus concluded by applying the estimates and

B3 to B2. O

In the following, assuming , we prove the existence of an operator Ilg
satisfying and (| @ First, we need some auxiliary results.

Definition 7. Let {1“1}Z i " be a basis of Ro(E). Let us define the set of
linear operators D; : V (E) — R such that Vv € V (E)

D;i(v) :==b(rs,v) Vi=1,...,N} —1.

14



Lemma 5. If (((E) +1)({(E) +2) — dim P, (E) > Ny — 1, there exists a
set of functions w; € [IP’Z(E)(E)}2 such that

Proof. In the following, with a slight abuse of notation we use ¢ instead of
((E). Let VM(FE) be the local mixed virtual element space of order ¢, defined
in [26], i.e.
VM(E) == {v € H(div; E) N H(rot; E) : v°(v - n?") € P,(e) Ve € &y,
divv € P,(E) and rotv € P,_(F)}.

Notice that [Py(E)]> € VM(E). For each v € VM(E), the degrees of freedom
of v are defined [26] by

1. [v-nqds, Ve € &y, Vg € Pyle),
2. [pv-Vpdx, Vp, € Py(E),
3. [,v-prdx, Vpy € {py € [P(E))*: [,py Vgdx =0V P, (E)}.

The number of degrees of freedom defined by the first, the second and the
third condition is, respectively, (¢ + 1)N}, % — 1 and w + 1.
Globally, dim VM(E) = ({ + 1)NY + £({ + 2).

Notice that a possible choice for the basis of Py(0F) := {p € P,(e), Ve €

&y} is composed by the N}, — 1 basis functions {’yaE(n)}figfl C Q(0F) C
14
P,(OE), completed by a choice of linearly independent functions {¢¢ }fit\}z,NE

Py(OF). Moreover, for any v € VM(FE) we have

Di(v):b(ri,v):/(v-naE)vaE(ri) ds VYi=1,...,Np —1,

OF

by an application of the divergence theorem. Hence, the first set of degrees
of freedom can be split into two groups, i.e.

e Di(v),Vi=1,...,N} —1,

o [pv-noqfds, Vi=Ny, . .. ({+1)N}.
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Let j € {1,...,N} — 1} and let VE(E;j) Cc VM(E) be
VEE;j) ={ve VM(E): Di(v)=0Vi=1,..., Ny —1,i#j}. (37)

Notice that dim VE(E;j) = dim VM (E) — (N} — 1) + 1. Moreover, we define
VAP (E) c VM(E), given by

VAP(E) = {v e VM(E): dof(v)-dof(p) = 0¥p € [P,(E)]*\ Pr*(E)} (38)

where dof(v) denotes the vector of degrees of freedom of v € VM (FE). Notice
that dim V*¢(E) = dim VM (E) — (¢ + 1)(¢ + 2) — dim PF*(E)). Since ((+
(0 +2) — dim P (E) > NY — 1, then dim VE(E;j) > dim V¢ (E) and
thus

Jw; € VH(E; j) N ([Po(E)* \ Pr7(E)) , w; #0.

Then we can choose m; = w, such that D;(w;) = 1, this is possible
since D;(w,) cannot be zero. Indeed, by contradiction let us suppose that
D;(w;) = 0, then, by definition of P (E) (13), w; € P (E). This is a
contradiction since w; € [Py(E))* \ PE*(E) and w; # 0. O

In the following proposition we provide a definition of Il and prove

and (29).

Proposition 4. Under the hypothesis of Theorem let us define Ilg :
V (E) = [Py(E)) such that Yv € V (E)

\%
NY -1

Mpv = Z D;(v)m;,
i=1

where 7; satisfies . Then 1lg satisfies and .

Proof. Since
Yo € V(E), Di(Ilgv) = Di(v) Vi=1,...,Ny — 1, (39)

let us check that IIx satisfies , indeed by construction Vr; € Ro(E), i =
1,...,Nl —1, Yo e V (E):

b(ri, llgv —v) = D;(Ilgv —v) = 0.

16



Furthermore, let us consider M pv = IllpvoF defined on the reference polygon
E. Applying the linearity of the definition of the mapping F' : E — E,
presented in , we have

Ny-1 NY-1 NY-1
i=1 i=1 i=1
(40)
Then, applying Lemma [4] we have Vi = 1,..., N} — 1
D) = hi (1, 9)] < Cos [y s 101l 5 - (41)
Then, we want to prove the continuity of IIgv. Since
lIpv € [P(B))* = lpv € CUE) = ||[pv]y, || wy,, =0,
applying and , we have
HHE’UH%/(E) = ||HE’U||[2L2(E)]2 +(V- HE’UHiz(E)
Ny-1 2 NY-1 2
= L(B) = LY(B)
NY-1 ( )

<c Z ID; (v (hgn gy |V

2
)

14 ~ (12 ~ 112 2 |~
< ONYuo_mas {7l ue) 1705 ) | 13 0y ) -

~~~~ E

We set C'(E) := max ”ﬂ”HlT(E) max ||7/1\',||V(E) This is a continuous function
(2 (2
on the set of admissible reference elements Y, which is a compact set by

Lemma |3 Indeed, ||ﬁ||H1T(E) is a continuous function Vi = 1,..., N — 1 on

v_
Y. Moreover, by definition, 7; depends continuously on the set {ﬁ}f\;’ﬁ !

Then there exists M = max,y, C(E) > 0. Finally, starting from ([@2), it

17



results that 3C' > 0 such that
HHEUH%/(E) < Ch \|@\|V(E)

2 2
2 ~ 112 o P 2 ~
<C hE Z ||'U||[L2(+)]2 + Z HV : ,UHLQ(%) + hE ‘ [[v]]IE LOO(IA)
7€Ty 7€Ty e
2
= CH’UHV(E) :
(43)
O

4.3. Numerical evaluation of the sufficient degree of projection

Algorithm 1 Algorithm for the computation of /(E) on a given polygon
Input: A polygon FE € M,
1: Let ¢(E) be the smallest number satisfying (¢(E)+1)({(E)+2) > Ny, —1
2: Compute the matrix B such that B;; = (Vp;, m;), Vm, € [I\A/IE’Z(E) (E)]?
3: Perform a QR decomposition of BT:
BT=QR
with Q € RNE xUE)+D)EE)+2) and R € RUE)FD(E(E)+2)x (L(E)+1)(L(E)+2)
N < number of diagonal elements of R whose absolute value is > le—12
while N < N} — 1 do
UE)«(E)+1
Compute B such that By; = (Vgpi, m;), ‘v"nAzi € ['\7'2(13) (E)?
Perform a QR decomposition of BT — QQTBT:
BT - QQ'BT = QR
with Q e RN x@E)+D) and R € RUE)+D)x(U(E)+1)
o BT [BT BT

TRT
10: R<—|:R QAB}

0 R
11: Q<+ [Q Q]
12: N < number of diagonal elements of R whose absolute value is >
le — 12

13: end while
14: return ((F), B

In this section, we describe a way to compute the minimum ¢(FE) that
satisfies for a generic polygon E € Mj. Let us start considering the

18



construction of Hgég)v. The computation of the matrix representing the

gradient projection follows standard VEM practice (see [28]). Let {¢;, j =
1,...,Ng} be a basis of V) and let

|\7|p (E) = { (I — xE)Oq (y — yE‘)Oé2

h%1+a2+1 ) with p=a1+ Oég}

~

be the set of homogeneus scaled monomials of degree p and [M, (E)J* :=

{(?) ,m e |\7|p (E)}U{ <7(r)z> ,m € |\7|p (E)} We consider the scaled mono-
mial basis [My ) (B)]? = {ms, k = 1,...,(UE) + D)(UE) + 2)} of

~

2

[Pe(E)(E)] given by the direct sum of [|\/|p (E)]? with 0 < p < ¢(E). Since
2

H?{E)V%‘ € [PZ(E)(E)] , we have

(L(E)+1)(L(E)+2)

H?{E)V% = Z mmy, Vi=1,...,N§.
k=1

It is then easy to check that the matrix I collecting the coefficients my; is
obtained by solving the matrix system

GIl =B, (44)

where Gy, = (m,;, my,) , is symmetric and positive definite and B;; = (V;, m;) .
Since dim VlEé(E) = N}, and thus dim VleK(E) = N} —1, then Hg&g)V: VVlEE(E) —

2
[]P’g( E)(E)] is injective if and only if the dimension of its range is Ny — 1.

This implies that the desired rank of II is NY — 1 and, since G is non-
singular, this is guaranteed if the rank of B is also N}, — 1. In order to
determine for each polygon E the minimum ¢(FE) providing numerically the
coercivity, we apply Algorithm We first set ((E) equal to the neces-
sary condition of the injectivity for the projector Hgig)v, ie. (14) with
dim Pé‘(ebi)(E) set to zero. Then, we start by computing the corresponding
matrix B. We perform a QR decomposition of BT: BT = QR, with the
matrix @ of dimension N} x ({(E) + 1)(¢(E) + 2) and the matrix R of di-
mension ({(E) + 1)(U(E) + 2) x ((E) + 1)({(E) + 2). We evaluate if the
number of non-zero elements of the diagonal of the matrix R is equal to the
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dimension of the space of gradients of VEM functions, i.e. Ny — 1. If not,
we increase ((E) until we satisfy the condition. Notice that the QR decom-
position is updated incrementally at each iteration and that the additional
cost of performing Algorithm |I| with respect to knowing ¢(E) in advance is

2
the QR decomposition of a matrix of dimension dim [IP’K( ) (E)} x NY. Once

we have the value of /(E) and the corresponding matrix B, we compute the
matrix G and solve (44]). The numerical robustness of this procedure with
respect to hg is guaranteed by the choice of the polynomial basis, that is such
that both G and B are invariant with respect to rescalings of the polygon.

Remark 7. In the implementation of Algorithm |1, we suggest the House-
holder QR decomposition at line 3 and the application of Givens rotations or
modified Gram-Schmidt with renormalization at line 8.

4.4. Coercivity of the discrete bilinear form

In this section we prove the coercivity of the discrete problem defined by
(11]) with respect to the standard HY2) norm, denoted by

WVilyay = IVVlpaqpz YV € Hy(2) .

Let

1

2
YoeV,,.
L%E)]) vE e

o= ( 3 Jmigiv

EeMy,

We have the following result.

Proposition 5. Suppose ((E) satisfies VE € My. Then, |||, is a norm
on V.

Proof. Let v € V), be given. It is clear from its definition that [[v], is a
semi-norm. Applying Theorem [[] and since v € H{(Q2), we have that

folle =0 = follyye =0 = v=0.

Lemma 6. We have that

[lle < l[vllyay Vo€ Vi (45)
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Moreover, if ((E) satisfies VE € My, then
Je. > 0: [loll, > e [[vllyyq)y Vo € Vi, (46)
where ¢, does not depend on h.

Proof. Relation follows immediately by the definition of Hgig) and an
application of the Cauchy-Schwarz inequality. Indeed, let £ € My, then

2
0,E o 0,F 0,F o 0,F
HHZ(E)VUHE— (155, Vo. 105, Vo) = (VoI5 Vo) < 1Vl

|

L)

On the other hand, by standard scaling arguments we have

2
E
It = 32 | wo)

[LY(E))?

2

H%;% 0= RO | e

Notice that VE € Y, where ¥ is the set of admissible reference elements,

v — Py(0) € Vf 1}1&%). Moreover, Yw € Vf tfg‘) both Hﬂ‘;(gﬁw and

[L2(2))°

are norms. Then, by standard arguments about the equivalence

~
~

Ollpeaey

of norms on finite dimensional spaces, we obtain VE € ¥

A ~ ~

Iy Vi [L2(5)]? 2 () |[vo [L(2))’ v
where MEN
C(E) = minzevl eIt @2 =1 Hg(givAé [LZ(E)]Z ‘ (48>
VNY —Tmax,_, Ng-1 || Vi L))

C (E’) is a continuous function on X, which is a compact set by Lemma
Indeed, f[SEA) is continuous on Y, as well as functions in V1 z follovvlng
proofs of [25, Lemma 4.9] and [29, Lemma 4.5). Moreover, C(E) > 0,VE €
Y. Indeed, applying Prop051t10n it holds that Vz € VE PO s ||dof (2)]],2 = 1,

2

A ~

20,F & 4 (& B0E &4 (s HO.E &2 oL  /a 0,E & 4
0 V2] e = (V105 ve) = (25 Ve n®F) = bz 0155 V)
OE ~
2 5 |57 gy e Il > 0,
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where Zg is the lifting of v9E(2) on Ro(E). Then, 3m > 0 such that m :=
min gy, C(F). Finally, by standard scaling argument we obtain

o] =m* Y HW@—PO(@))HEZ@)F = [ollgyey - (49)
EeMy

]

In the following theorem, we provide a proof of the continuity and the
coercivity of the discrete bilinear form. The coercivity property follows from
Lemma, [6l

Theorem 2. Let a;, be the bilinear form defined by . Then,
ay, (w,v) < [Jwllgyq) ||U||H(1)(Q) Vw,v eV, ,. (50)
Moreover, suppose ((E) satisfies VE € M,,. Then,
3C > 0, independent of h: a;, (w,w) > C HszHé(Q) Vw €V ,. (51)

Proof. Let w,v € V,;, be given. Applying the Cauchy-Schwarz inequality
and we get

a, (w,v) = Z (Hg&g)Vw,Hgig)Vv>

EeMy E
< %% v ‘ % v ]
_EEZM H (4B Y Ly 68 Y a2
h

< Jlwliglvlle < lwllayay lollmye) -

Moreover, assuming that ¢(FE) satisfies VE € My, we can apply the
lower bound in (46]) and get

2 2 2
ay, (w, w) = |wllg = ()" [[wllyey -
O

This theorem implies that the bilinear form a;, of the problem satisfies
the hypothesis of the Lax-Milgram theorem, hence the problem admits a
unique solution.
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5. A priori error estimates

In this section we derive error estimates for the proposed method, in H}
norm and in the standard L? norm. First, we recall classical results for Vir-
tual Element Methods concerning the interpolation error and the polynomial
projection error (see [8,2]).

Lemma 7. Let U € HAQ), then there exists C > 0 such that Y h, 3U; € V, ,
satisfying
||U - UI”L2(Q) +h ||U - UIHH})(Q) < Ch? |U|2- (52)

Proof. The proof of this result is detailed in [20], it follows a similar approach
as the one in [§]. O

Lemma 8. Let U € HAQ), then there exist C1,Cy > 0 such that

|TIU = Ul| 0y < Colt U |1y - (54)
(@) }

Theorem 3. Let U € H(Q) NHYQ) and f € LAQ) be the solution and the
right-hand side of , respectively. Then, AC' > 0 such that the unique
solution u € V, , to problem satisfies the following error estimate:

10 = wlligey < Ch (101 + 1 1oy (55)

Proof. Let U be given by Lemma [7] Applying the triangle inequality, we
have
U = ullyyqy < IU = Utllgyq) + U1 = ullgyq) - (56)

We deal with the two terms separately. The first one can be bounded applying

, i.e.
IU = Utllygyy < CR U, (57)
On the other hand, in order to deal with the second term of let ¢ = Ur—u.

First, applying the coercivity of the bilinear form ay, and the discrete
problem (|11)), we have that 3C > 0:

C Hg”QHgJ(Q) <ay(g€) =a,(Une) —ay, (u,e) = a, (U, e) - Z <f> H87E5>E
EeMy
(58)
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Applying the definition of the L? projectors and adding and subtracting
terms, i.e. Hg&g)VU and VU, we have

an(:6) = ay (Ui = U.e) + 0, (Uie) = Y (157 F.c)
EeMy,

=a, (U —U,e)+ 5 VU — VU, Ve) + (VU,Ve), — (TI77 f,e
v+ 3 (i )+ (909 = (185.2)

E

=a, (U —U,e)+ 2 VU - VU, Ve) + (f-110Ffe) .
s 5 (ST (e,

Let us consider the last three terms separately. The first one can be bounded

applying and , ie.
(Ui = U,€) < U ~ Ulhgyey Welhgey < CRIUL lellgey - (59)

Applying the Cauchy-Schwarz inequality and , the second term can be
bounded as follows:

0,FE 0,E
S <H£(E)VU _ v, w)E <y HHaE)VU - VUHL2(E) lelliye)
EeMy EeMy (60)

< Ch|U|, ||6||H(1)(Q) :

The last term can be bounded applying the definition of Hg’E, the Cauchy-
Schwarz inequality and , ie.

Z (f B Hg,Ef’ 8)E - Z (f’ °T H87E€>E

EeMy EecMy
E
<X Wl [ =115, < ORIl el
EeMy
(61)
Finally, applying together , and into and simplifying, we
have
el < Ch (101 + 1 e ) - (62)
Considering together and we prove (55)). ]

Theorem 4. Let Q be conver. Let U € H{Q) N HYQ) and f € HY(Q) be
the solution and the right-hand side of ,respectively. Then, 3C' > 0 such
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that the unique solution u € V, , to problem satisfies the following error
estimate:

U~ ullyzey < O (101, + 1 F ey - (63)

Proof. Let us define the auxiliary problem: let ¥ € H{Q)NH{(Q) the solution
of a(V,0) = (U —u,V), YV € H{S). From the definition of ¥, we get:

3C>0:  [¥], SOHU_UHL?(Q)v (64)

3C>0: Vo) < CINU = ull ) (65)

Let us denote by ¥; the interpolant of ¥ according to Lemma [7l Applying

the auxiliary problem, the discrete problem (11) and the definition of the
bilinear form a , we have

(U,\I’—\I/] +a(U,‘I/[)—a(u,\I/)

U = ullfoq) = (U —u,U —u)g =a(U - u,T)
—a )
:CL(U,\IJ—\IJI)—{—(f,‘I/[)Q—G(U,‘I/)

:a(U,\If—‘IJ[)+(f7\IJI)Q_ ( Z (f’H%E\II[)E)

EeMy
+ay, (u, V) —a(u, V) +a(u, V) —a(u, Vr)

—a(U—u, U —0)) + < Z <f, \IJI—HS’E\IH)E) (66)

EeMy
+ay, (u, V1) —a(u, ¥p).

Let us consider the terms of the previous relation separately. First, applying
the Cauchy-Schwarz inequality, , and , we have, for the first
term,
aU—u¥ -V <|U- u”H(l)(Q) v — \I/IHH})(Q)
< Ch|lU - uHHé(Q) W], < Ch||U - U’HH(l](Q) U — “”L2(Q) J
(67)
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and, for the second one,

> (fw-mPe) = 3 (F-mtre -ngte)

EEMh EEM}L
< 5 romed),, oo,
e LYE) LYE)
0,FE
< Chlflny 3 |0 —IR5w |, o (69)
EeMy,

Applying the property
VE € M,, H\IJI - HB’E\IJIH < qul 0y
LY E)

bl

L(E)
and to , we obtain
- (f, U, — H‘;’Exp[)E < Chflue . H‘I’f -mre|
EeM,;, EeMy, (B)

< Chlflyg) Y (H\Ijl = Vs + H\I} h H%%Hy@))

EeMy
< Ch iy (B2 1915 + ¥ llye) - (69)
We can omit higher order terms and apply , obtaining
S (o -1Pw) < OB | flyoy IU = ullizgy - (70)

EeMy

Finally, we have to bound a, (u, ¥ ) — a (u, ¥y). Then, applying the orthog-
onality property of Hg&g), adding and subtracting terms, we have

ap (u,0) —a(u, W) = (H?{%VU, V\IJI)E — (Vu, V),

EeMy
= > (0 Ve - Vu, Ve, - 10w,
EeMy E
IR AR AL TR R 7
EeMy, E

0,E 0,E
+ (W VU - vU, v, - 11§ V\I/I>E

+(CZ/—CU,C\I’[—H8’ V‘I’[) .
( )
71
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Notice that, applying and , we have the property VE € M,,:

HV\I!I 0PV,

< |ve -mgrve| | <cnjul,,.

LYE) LXE)

Therefore, applying the continuity of the projection operator and , the
first and the last term of can be bounded as

2 (H%)v“ — Ly VU, V¥ — HS’EV%)E + (VU — Vu, VU, — Hg’EV\p,>E
EeMy
< ChNU = ullypyoy 1U = ull 20 -
(72)
Similarly, the second term is bounded as

3 (H%)VU VU,V — HS’EV\D[)E < CR UL U ~ ullzqy - (73)
EeMy

Finally, applying , , and to and simplifying, we obtain
10 = ulligy < C (R0 = uligay + 5 |l + 52 1U1,)
Applying the H'-estimate (Theorem [3) we obtain the relation . O

Remark 8. Denoting by IV the L2-projector from LAE) to P,(E), we can
define the discrete problem as

ay, (u,v) = Z <f,H(1)’Ev>E Yo eV,

EeMy

and we can require f € L) so still holds as

10 = wlgey < 02 (101, + 1 llay) -

Remark 9 (Extension to more general elliptic problems). Consider the fol-
lowing diffusion-reaction model:

{—AU+U:f inQ, )

U=0 on 0f).

27



Table 1: Sufficient ¢(E) for regular polygons up to 24 edges

NY |3 45 6,7 89 10,11 12,13 14,15 16,17 18,19 20,21 22,23
«E) [0 1 2 3 4 5 6 7 8 9 10
(NEY[O0 1 1 2 2 2 3 3 3 3 4
Table 2: Sufficient ¢(E) for non-regular convex polygons up to 24 edges
N]‘E/ 3 4,5 6,7 89 10,11 12,13 14,15 16,17 18,19 20,21 22,23
E) |0 1 1 2 2 2 3 3 3 3 4
{(NYY|[O0 1 1 2 2 2 3 3 3 3 4

The coercivity of the bilinear form defined by @D and allows us to dis-
cretize it as: find u €V, o such that

ay, (u,v) + Z <H8’EU,H8’EU>E: Z (f,Hg’Ev>E YoeV,,. (75)

EeMy, EeM,,

If U(E) satisfies locally on each polygon, we can prove the well-posedness
of following [2, Lemma 5.7]. Optimal order a priori error estimates can
be proved as in [2, Theorem 5.1 and 5.2], using the interpolation result given
by Lemma []. In Section [6.2.5 we assess numerically the validity of such
results.

6. Numerical Results

This section is devoted to assess the theoretical results reported previ-
ously. First, we consider single polygons and investigate numerically which
is the minimum degree ¢(E) providing coercivity, then we carry out some
convergence tests.

6.1. Coercivity tests

To test numerically the coercivity of the bilinear form a, we consider a

set of polygons and we perform for each of them Algorithm [I| which returns

Table 3: Sufficient ¢(E) for polygons with aligned edges up to 24 edges (built on the
non-regular convex triangle)

NY |3 45 6,7 89 10,11 12,13 14,15 16,17 18,19 20,21 22,23
“E) [0 1 2 2 3 4 4 5 6 6 7
NYYlO 1 1 2 2 2 3 3 3 3 4
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Table 4: Sufficient ¢(E) for polygons with aligned edges up to 24 edges (built on the
non-regular convex hexagon)

NY |7 89 10,11 12,13 14,15 16,17 18,19 20,21 22,23 24
(E) |1 2 2 2 3 3 3 3 4 4
{NE) |1 2 2 2 3 3 3 3 4 4

the minimum ¢(F) that ensures numerically the local coercivity. In view of
Theorem [I}, we define, for any E € M,,

{(NY) as the smallest I such that (I+1)(I+2) > Ny —1.

Notice that Theorem [1] implies that the minimum ((E) that is sufficient to
obtain local coercivity on E satisfies £/(E) > ¢(N}). In the following, we
compute numerically the minimum ¢(E) that induces the coercivity of the

stiffness matrix for several sequences of polygons.
In Table [1| we display ¢(N},) and the minimum ¢(E) computed by Algo-

rithmfor regular polygons of n vertices having vertices x; = (COS (%) sin <(—

i€{l,...,n}. We can see that for these polygons the value of ¢(E) provided
by the algorithm corresponds to the one that we obtain if we use harmonic
polynomials only (see [30]). This suggests that for regular polygons the pro-
posed method seems to be stable if and only if the projection space contains
the gradients of harmonic polynomials.

On the other hand, if we consider a sequence of non-regular convex poly-
gons, the results in Table [2] suggest that we can take ((E) = ¢(NY). The
vertices of such polygons are generated by sampling random points on a cir-
cle of radius 1 and imposing that the ratio of each edge and the diameter of
the circle is > 0.1.

A third test considers a sequence of polygons with aligned edges obtained
starting from a non-equilateral triangle and then progressively splitting its
edges into equal parts one at a time until all three edges are split into eight
equal parts, thus generating a sequence of polygons up to 24 edges. In Table
we can see how the sufficient ¢(E) that guarantees coercivity in this case is
inside the range given by ¢(NY) and the sufficient ¢(E) obtained for regular
polygons.

A similar test is reported in Table [d, where the same procedure has been
applied to a non-regular hexagon. We can see that in this case é(N};/) is
sufficient.

29
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Lastly, we consider a sequence of polygons that are non convex. To
generate this sequence, we start from the quadrilateral considered in the
second test (Table 7 add the edge midpoints as vertices and move them
towards its barycenter z¢ with the transformation S(z) = (1 — a)z + axc,
thus obtaining a sequence of non-convex octagons. We select four polygons
by choosing a € {0,0.2,0.4,0.6}, larger is « smaller is the radius of the
inscribed ball. In all these cases, the sufficient ¢(E) that guarantees coercivity
is 0(8) = 2.

Finally, for each polygon we compute the (N} — 1)-th from largest to
smallest eigenvalue of the local stiffness matrix A¥, denoted by ONY -1
using the value of ¢(F) provided by Algorithm ONY -1 # 0 ensures the
rank of the stiffness matrix be equal to N, — 1. In Figure[l] we depicted the

—©&— Regular polygons

10°® | |—8— Non-regular convex polygons

—S— Polygons with aligned edges (triangle)
Polygons with aligned edges (hexagon)

0 5 10 15 20 25 0 0.1 0.2 03 0.4 0.5 0.6

NY «a
(a) Convex polygons (b) Concave polygons

Figure 1: Values of the VONY 1 for polygons analyzed in Section

square root of ONY_1 for all polygons considered in this section, these values
are a numerical approximation of the local coercivity constant. Notice that
the value of /(E) can be different for polygons with the same N}, for each
polygon ¢(E) is written in Tables [1] 2} 3| and

The coordinates of all polygons considered in this section, except for the
regular ones, are provided as supplementary materials to the paper.

6.2. Convergence tests

Let us consider problem on the unit square with homogeneous Dirich-
let boundary conditions and the right-hand side defined such that the exact
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solution is
Uer = sin(2mx) sin(27y).

In the following, we show, in log-log scale plots, the convergence curves of
the L? and H' errors that we measure respectively as follows,

L? error = \/ Z HHIV’EU

EeMy

2

)

LA(E)

2

L(E)

Lerror = \/ Z HVHVEU—VU%

EeM,

where u is the discrete solution of (| . Then, for each polygon £ € M,
we choose ¢(E) such that the sufficient condition is satisfied, as detailed
below.

6.2.1. Meshes

We consider four sequences of meshes for the convergence test. The first
sequence, labeled Hezagonal, is a tesselation made by hexagons and triangles,
as it is shown in Figure For this mesh, Algorithm [1|¢(E) = 0 on triangles
and ¢(E) = 2 on hexagons. The second sequence, shown in Figure [2b| and
labeled Octagonal, is made by octagons, squares and triangles. It results
((E) = 0 on triangles, /(F) = 1 on squares, ¢(E) = 2 on octagons. Then, the
third sequence, labeled Hezxadecagonal, is made by hexadecagons and concave
pentagons, as it is shown in Figure 2d It results £(E) = 1 on the concave
pentagons and ¢(E) = 3 on hexadecagons. Finally, the last sequence, labeled
Star Concave, is a non-convex tessellation made by octagons and nonagons,
as it is shown in Figure Rd By Algorithm [I} ¢(E) = 3 on octagons and
((E) = 2 on nonagons. In each case we start from a mesh of #.M,, polygons
then we refine it, obtaining meshes made by 4# M), 16#M, and 64#M,,
polygons. The first and the third sequence start with #M, equal to 320,
the second and the fourth with #M,, equal to 164 and 192 respectively.

6.2.2. Convergence results

For the four mesh sequences, we report the trend of the H' and the L?
errors in Figures [3al and [3D] respectively, decreasing the maximum diameter
of the polygons. In the legends, we report the computed convergence rates

with respect to h, denoted by . We see that we get the expected values for
all the meshes, as obtained in and .
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Figure 2: Meshes

6.2.3. Convergence of diffusion-reaction discrete problem

We finally report, in Figure [d] the H' and L? errors obtained for the four
mesh sequences when solving using the discrete formulation . We
can see that the convergence rates o reported in the legends are optimal.

7. Conclusions

In this work, we present a structure-preserving Virtual Element formu-
lation, where the bilinear forms involve only polynomial projections in the
definition. We discuss a general proof of well-posedness of the lowest order
method applied to the Poisson problem, identifying a sufficient condition.
Then, we propose an algorithm to numerically ensure the stability of the pro-
posed scheme, that exploits an incremental QR factorization, and we derive
optimal a-priori error estimates. Numerical tests on convex and non-convex
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Figure 3: Logarithmic convergence plots

polygons show the robustness of the method and assess the expected rate of

convergence.
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Appendix A. Notation Table

Geometry
E generic polygon
To centre of the ball with respect to which E is star-shaped
Te triangulation of E obtained linking each vertex of E to z¢
Tg edges of Tr internal to E
Operators
OF

[l

trace operator on 0F
jump operator over an edge e

Polynomial projectors

P.(E) | space of polynomials defined on E up to degree k
1y H! orthogonal projector on P, (E)
Py projection operator onto the space of constants
1197V | LAE) orthogonal projector of gradients on [P,( E)]?
Local spaces
veH(E): Av e P (E), +*(v) €P(e) Ve € &,
VE
& veCOB), (v.p), = (I7"v.p) Wpe P, (B)
Prr(E) | {p € [P(E))? - Jop P - nPF7?F (v —Po(v) =0 Yo e VY
HYE) | {velXE): v, € H(r) V7 € Tp}
V(E) | {ve[lX(E) v, € H¥r) V7 € T, [v],, € L(e;) Ve; € I}
Q(OE) | span {77 (1; — Po(¢y)) Vi =1,..., N} — 1} where t; are basis func-
tions of V (E)
Ro(E) | {g€LAE): g, € P(1) V7 € T, v7%(q) € Q(OE), q(zc) = 0}
Norms
NV
12 112 112 Eoiron 112
HQHH%.(E) HQHL2(E) + TGX;E HVQH[L2(T)]2 + z; H[[Q]]e L2(e;)
2 2 2 2
0170 | 10l + 3 19 -2lixn + [l e

Appendix B. Proof of Lemma [4]

In order to show the proof, we have to present a preliminary result.
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Lemma 9. Let § € Ro(E). Then 3C > 0, independent of hg, such that

Ny
Z q(x:)| < C | Z ||V§||i2(T)- (B.1)
=1 TETE

Proof. We notice that

S latw)l = 5 3 (laten)] +latea)) (5.2

T€TE

where z,, and z. are the vertices of 7 that are on OE. We have that

G- € P1(1) = {p € Py(7) : plac) = 0} ,

and

@) + la(r2)] = |dofs, ., (ar)

n’

having chosen the values at z.; and x5 as set of degrees of freedom on ]f"l (1)
and denoting by dofs ) (+) the operator returning the vector of such values.
Using the mapping we get

Hd‘)fﬂ»l(r) (@)

o =0t @), -

The right-hand side of the above equation is a norm on I@l(%), as well as
H@cf . Then, by standard arguments about the equivalence of norms in
L+

finite dimensional spaces, we have

FaNIDN

\/§maXi:1,2 HdOff@l(i—) (Xz) "

~

=
o

Hd‘)fn”»l(ﬂ (@+)

)
i L)
MG eBy (7)1 b (85,1) 24085 2)2=1

LX)

where the y; are Lagrangian in the degrees of freedom. Then, ‘ dofp, 7 (X1) )
l

=1 and
ll

HdOfﬁml(%) (X2)

<
no

V2
min .

WEP (7): W(ds,1)2+d(E7,2)2=1

Hdoﬂﬁl(ﬂ (a2)
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It can be proved by standard arguments that the constant in the above
inequality is continuous with respect to 7, since it depends continuously on
the deformation of the domain (see the proofs of [25, Lemma 4.9] and [29,
Lemma 4.5]). It follows by compactness of the set of admissible reference
elements, denoted by X2, (Lemma that there exists M > 0 such that

V2

WEP (7): (a7 1)2 (25 2)2=1

M = max
TEY

~

Vo

min
L2(7)

and thus, starting again from (B.2)) and applying the mapping , we get

Z |q IZ o Z HdOfP1(T q‘ Z HdOf]P’l(T Q|’T

TE E 7'6 B
M AN M \/ N —12
< o Z Vq L =5 Z ”VCI“L2 = 5 = Z quHL2(T)7
7€Ty T€TE T€TE
and we obtain (B.I) since Ny is uniformly bounded by (4. O

Now, we can present the proof of Lemma [4]

Proof. Let ¢ € Ro(F) and v € V (E) be given. Starting from and
applying the triangular inequality, we have

Z/qu+qv v| dz| +

TETE

b(q,v)| <

Z / q) [v],, - m“ds|. (B.3)

Let us consider separately the two terms involved in the inequality. The first
part can be analyzed applying the property,

Vi€ Ro(E), Y (Nalluan + I¥alluap) < /2N Nl

TE€ETE
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and the mesh assumption , as follows

Z/qu+qv v] da

TETE

< >~ (IV@l e Wl + 18le) 1V 0l

TETE

<C Z <||’U||[L2(T)}2 + V- ’U||L2(T)> X <||VCY||[L2(T)]2 + ||q||L2(T)>

TETE

< Clalhyry 3 (19l + 1V - lia)

TE€ETE

Moreover, let us consider the second term of (B.3)), computing exactly the
term |’7€i(q)”L2(ei) and applying the properties Vv € V (E)

NY Ny
2
Zl: H[[,U]]ei L2(e;) < 2N}‘3/ 2_1: H [[U]]ei Le;)’

1.,

1242(61.) < hg ‘}HU]]IE||im(IE) , Ve, € Ik,

we have

Z / D) [o],, - nods <Z|l7 @l
< z V_

[o]., -

L2(e;)

'Iz | H[[v]]eZ [L2e:)]? — H[[ ]]IE”LOO (Zg) Z ’q :EZ
\/_

S OhE ||[[v]]IEHL°°(ZE) ||qHH%,(E) )

where we apply Lemma @ in the last step. Finally, substituting into (B.3)),
we obtain

|b(Cj7’U>| S C ||q||H%,(E) (Z (H’UH[L2 7')]2 + ||v v||L2 7‘)) + hE H[[v]]IEHLOO(IE >

T€TE

< Clallus ey 10y ey
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