Let ℓ1,...,ℓ1 be l lines in ℙ2 such that no three lines meet in a point. Let X(l) be the set of points {ℓi ∩ ℓj {divides} 1 ≤ i < j ≤ l} ⊆ ℙ2. We call X(l) a star configuration. We describe all pairs (d, l) such that the generic degree d curve in ℙ2 contains an X(l). Our proof strategy uses both a theoretical and an explicit algorithmic approach. We also describe how one may extend our algorithmic approach to similar problems. © 2011 American Mathematical Society.

Star configuration points and generic plane curves / Carlini, E.; van Tuyl, A.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 139:12(2011), pp. 4181-4192. [10.1090/S0002-9939-2011-11204-8]

Star configuration points and generic plane curves

Carlini E.;
2011

Abstract

Let ℓ1,...,ℓ1 be l lines in ℙ2 such that no three lines meet in a point. Let X(l) be the set of points {ℓi ∩ ℓj {divides} 1 ≤ i < j ≤ l} ⊆ ℙ2. We call X(l) a star configuration. We describe all pairs (d, l) such that the generic degree d curve in ℙ2 contains an X(l). Our proof strategy uses both a theoretical and an explicit algorithmic approach. We also describe how one may extend our algorithmic approach to similar problems. © 2011 American Mathematical Society.
File in questo prodotto:
File Dimensione Formato  
1001.4504.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Creative commons
Dimensione 176.07 kB
Formato Adobe PDF
176.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2875952