In this paper we will continue the analysis of two dimensional Schrödinger equation with a fixed, pointwise, nonlinearity started in [2, 13]. In this model, the occurrence of a blow-up phenomenon has two peculiar features: the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves; there is no critical power nonlinearity, i.e., for every power there exist blow-up solutions. Here we study the stability properties of stationary states to verify whether the anomalies mentioned before have any counterpart on the stability features.

Stability of the standing waves of the concentrated NLSE in dimension two / Adami, Riccardo; Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. - In: MATHEMATICS IN ENGINEERING. - ISSN 2640-3501. - 3:2(2021), pp. 1-15. [10.3934/mine.2021011]

Stability of the standing waves of the concentrated NLSE in dimension two

Adami, Riccardo;Tentarelli, Lorenzo
2021

Abstract

In this paper we will continue the analysis of two dimensional Schrödinger equation with a fixed, pointwise, nonlinearity started in [2, 13]. In this model, the occurrence of a blow-up phenomenon has two peculiar features: the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves; there is no critical power nonlinearity, i.e., for every power there exist blow-up solutions. Here we study the stability properties of stationary states to verify whether the anomalies mentioned before have any counterpart on the stability features.
File in questo prodotto:
File Dimensione Formato  
Adami R., Carlone R., Correggi M., Tentarelli L.,Stability of the standing waves of the concentrated NLSE in dimension two, 2020.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 534.27 kB
Formato Adobe PDF
534.27 kB Adobe PDF Visualizza/Apri
1901.02696.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 687.13 kB
Formato Adobe PDF
687.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2875822