
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Stability of the standing waves of the concentrated NLSE in dimension two / Adami, Riccardo; Carlone, Raffaele;
Correggi, Michele; Tentarelli, Lorenzo. - In: MATHEMATICS IN ENGINEERING. - ISSN 2640-3501. - 3:2(2021), pp. 1-
15. [10.3934/mine.2021011]

Original

Stability of the standing waves of the concentrated NLSE in dimension two

Publisher:

Published
DOI:10.3934/mine.2021011

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2875822 since: 2022-07-20T12:24:14Z

AIMS Press



http://www.aimspress.com/journal/mine

Mathematics in Engineering, 3(2): 1–15.
DOI:10.3934/mine.2021011
Received: 10 January 2020
Accepted: 27 June 2020
Published: 13 July 2020

Research article

Stability of the standing waves of the concentrated NLSE in dimension two†

Riccardo Adami1,∗, Raffaele Carlone2, Michele Correggi3 and Lorenzo Tentarelli1

1 Politecnico di Torino, Dipartimento di Scienze Matematiche “G.L. Lagrange”, Corso Duca degli
Abruzzi, 24, 10129, Torino, Italy

2 Università degli Studi di Napoli “Federico II”, Dipartimento di Matematica e Applicazioni “R.
Caccioppoli”, MSA, via Cinthia, I-80126, Napoli, Italy

3 Politecnico di Milano, Dipartimento di Matematica, Piazza Leonardo da Vinci, 32, 20133, Milano,
Italy

† This contribution is part of the Special Issue: Nonlinear models in applied mathematics
Guest Editor: Giuseppe Maria Coclite
Link: www.aimspress.com/mine/article/5512/special-articles

* Correspondence: Email: riccardo.adami@polito.it.

Abstract: In this paper we will continue the analysis of two dimensional Schrödinger equation
with a fixed, pointwise, nonlinearity started in [2, 13]. In this model, the occurrence of a blow-up
phenomenon has two peculiar features: the energy threshold under which all solutions blow up is
strictly negative and coincides with the infimum of the energy of the standing waves; there is no
critical power nonlinearity, i.e., for every power there exist blow-up solutions. Here we study the
stability properties of stationary states to verify whether the anomalies mentioned before have any
counterpart on the stability features.
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1. Introduction

The Nonlinear Schrödinger Equation (NLSE) with concentrated nonlinearity in d = 2 is the subject
of several recent papers, finalizing a research program developed over the last twenty years (see [3, 4,
8, 14] for the NLSE with concentrated nonlinearity and also [15] and [12] for the fractional case and
the Dirac equation, respectively).

Such a research line was originally motivated by some mesoscopic physical models. For instance,
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in semiconductor theory the effect of electronic charge accumulation in a resonant tunneling in a
double barrier heterostructure [20] is typically studied using a concentrated NLSE. More recently,
other applications have been suggested: the spontaneous formation of quantum coherent
non-dissipative patterns in semiconductor heterostructures with nonlinear properties [11]; the
dynamics of the mixed states of statistical physics [23]; the appearance of quantum turbulence in the
probability density [9]; the scattering in nuclear physics models for the disexcitation of isomeric states
and also the production of weakly bounded states in heavy nuclei close to the instability; the analysis
of resonant tunneling diodes, which exhibits intrinsic instability [31] or the fabrication of
semiconductor superlattices, for the estimate of the time decay rates for the solutions to the
Schrödinger-Poisson equations in the repulsive case [10, 25].

In [13] and [16] the local well-posedness is established, i.e., the problem of existence and
uniqueness of the solution for short times, as well as the mass and energy conservation. Global
existence is also proven in the defocusing case irrespective of the power of the nonlinearity. In [2] it is
studied the occurrence of a blow-up phenomenon for a focusing nonlinearity, with two peculiar
features: first, the energy threshold under which all solutions blow up is strictly negative and
coincides with the infimum of the energy of standing waves; second, there is no critical power
nonlinearity, i.e., for every power there exist blow up solutions. We remark that such a behavior is
anomalous compared to the conventional NLSE, also because such anomalies are not a direct
consequence of the dimension, or of the concentrated nonlinearity. In fact, there is a critical power for
standard nonlinearities in dimension two [21], and there is also a critical power for concentrated
nonlinearities in dimension one and three [3, 8]. In the present paper we investigate further whether
such peculiarities also show up in the stability of stationary states.

Let us preliminarily recall the results on the standard NLSE [29]: Consider the Cauchy problem for
a focusing NLSE, where the word focusing refers to the attractive character of the nonlinearity, with
initial data in the energy space

ı∂tψ(t, x) + 4ψ + |ψ|2σψ = 0, ψ(0, x) = ψ0(x) ∈ H1(Rd).

In [17], using a variational characterization, it was established the orbital stability of the ground-states
in the subcritical case, i.e., for σ < 2\d. On the other hand, [19, 26, 30] presents an alternative proof
of orbital stability for the subcritical solitary waves and shows the orbital instability in the critical and
supercritical case (σd > 2).

It turns out that there is a strict relation between blow-up and orbital stability of standing waves [28].
The NLSE admits blow-up solutions if and only if its solitary waves are orbitally unstable. This
behavior has some relevant exceptions as in the case of NLSE in bounded domains or in [27] where
the key feature of all this models is always the absence of translational invariance in space.

The analysis of stationary states stability for concentrated nonlinearities traces back to [5–7]. For
the concentrated NLSE in dimension 2 the scenario is different and, in some sense, surprising. As it
will be illustrated in Section 2 there are, at any fixed value of the mass, two branches of stationary
states, distinguished by the value of the frequency ω, with opposite orbital stability behavior. To the
best of our knowledge, there is no similar behavior for a standard Schrödinger equation on Rd, but
some analogy exists with the 1d NLSE in the presence of a point interaction [18] and with NLSE on
compact domains [22, 24]. In all these cases, the nonlinearity is supercritical.

As for the case of concentrated NLSE in the defocusing case, the scenario is really puzzling. In
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Section 3 the analysis of stationary waves reveals that they are stable and moreover that they are
ground states.

1.1. Setting and known results

The problem under investigation can be formally written as
ı
∂ψ

∂t
=

(
− ∆ + β|ψ|2σδ0

)
ψ, in R+ × R2,

ψ(0) = ψ0, in R2,

(1.1)

where σ > 0, β ∈ R and δ0 is a Dirac delta function centered at the origin of R2.
As extensively explained in [2, 13], the Cauchy problem in (1.1) can be rigorously formulated in a

weak form. To this aim, one has to first introduce the so-called energy space

V :=
{
χ ∈ L2(R2) : χ = χλ + qGλ, χλ ∈ H1(R2), q ∈ C

}
, (1.2)

with λ > 0 and Gλ denoting the Green’s function of −∆ + λ in R2, i.e.,

Gλ(x) :=
K0(
√
λx)

2π
=

1
2π
F −1[(|̨|2 + λ)−1](x), (1.3)

(recall that K0 is the Macdonald function of order zero given, e.g., in [1] and that F is the unitary
Fourier transform of R2). Note that the parameter λ does not affect the definition of V . Indeed, it is
possible to rewrite the space V without the parameter λ, as

V =

{
χ ∈ L2(R2), χ = χ0 − q

log |x|
2π

, χ0 ∈ Ḣ1(R2), q ∈ C
}

(1.4)

where Ḣ1(R2) is the homogeneous Sobolev space. However, as (1.4) is not easily implemented in the
expression of the energy, we shall keep using (1.2) throughout.

Hence, we can define a weak solution of (1.1) as a function ψ such that

ψ(t) = φλ(t) + q(t) Gλ ∈ V, ∀t > 0, (1.5)

and such that, for every χ = χλ + qχGλ ∈ V , ı
d
dt
〈χ, ψ(t)〉 = 〈∇χλ,∇ψ(t)〉 + λ(〈χλ, φλ(t)〉 − 〈χ, ψ(t)〉) + θλ

(
|q(t)|

)
q∗χq(t), ∀t > 0,

ψ(0) = ψ0,
(1.6)

where 〈·, ·〉 is the usual scalar product in L2(R2), and θλ : R+ → R is defined as

θλ(s) :=
log(
√
λ/2) + γ

2π
+ βs2σ,

with γ the Euler-Mascheroni constant (note that the parameter λ does not affect (1.6) too). According
to (1.5) we will usually refer to φλ(t) as the regular part of ψ(t), to q(t)Gλ as the singular part and to
q(t) as the charge.
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It has been proven in [2, 13] that, for σ > 1/2, (1.6) is locally well-posed in V (with the additional
assumption φλ(0) ∈ H1+η, η > 0) and that the mass

M(t) = M
(
ψ(t)

)
:= ‖ψ(t)‖2,

‖ · ‖ denoting the usual norm in L2(R2), and the energy

E(t) = E
(
ψ(t)

)
:= ‖∇φλ(t)‖2 + λ

(
‖φλ(t)‖2 − ‖ψ(t)‖2

)
+

(
β|q(t)|2σ

σ + 1
+

log(
√
λ/2) + γ

2π

)
|q(t)|2, (1.7)

which is independent of λ as well, are preserved along the flow. In addition, when β > 0, i.e., in the
defocusing case, the solution is global in time, whereas when β < 0, i.e., in the focusing case, the
solution blows up in a finite time. In order to prove these results, one has to require [2] that φλ(0)
belongs to the Schwartz space, which is only a technical hypothesis, and, more important, its energy
satisfies

E(ψ0) < Λ = Λ(σ, β) := −
σ

4π(σ + 1)(−4πσβ)1/σ .

In the following sections we study the problem of the stability of stationary states separately in the
focusing and defocusing case.

2. Focusing case

In the focusing case, i.e., for β < 0, (1.6) admits (see [2]) a unique family of standing waves of the
form

ψω(t, x) := eıωt eıη uω(x), η ∈ R, ω ∈ (ω̃,+∞), ω̃ := 4e−2γ, (2.1)

where

uω(x) := q(ω)Gω(x), q(ω) :=
(
−

log
(√
ω/2

)
+ γ

2πβ

)1/2σ

. (2.2)

The behavior of q(ω) is depicted in Figure 1a.
Now, plugging (2.2) into (1.7), one finds that the energy of the standing waves as a function of the

frequency ω reads

E(ω) := E(uω) =

(σ log
(√
ω/2

)
+ γσ

2π(σ + 1)
−

1
4π

)(
−

log
(√
ω/2

)
+ γ

2πβ

)1/σ

, ∀ω ∈ (ω̃,+∞). (2.3)

The behavior of E(ω) is represented in Figure 1b. In addition,

min
ω∈(ω̃,+∞)

E(ω) = E(ω) = Λ, where ω := 4e−2γ+1/σ. (2.4)

Mathematics in Engineering Volume 3, Issue 2, 1–15.
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(a) Behavior of q(ω).
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(b) Behavior of E(ω).

Figure 1. Plots of q(ω) and E(ω) for ω ∈ (ω̃,+∞), when σ = 1 and β = −1. Here ω̃ ≈ 1.26,
ω ≈ 3.43, q ≈ 0.2 and Λ ≈ −0.0016.

On the other hand, noting that q(ω̃) = 0 and that q(·) is smooth and strictly increasing on (ω̃,+∞),
one can take the inverse q(ω) of the function

ω(q) := 4 e−2γ−4πβq2σ
, q > 0, (2.5)

and plug it into (2.3), to obtain the energy as a function of q, i.e.,

E(q) = −
q2

4π
−
σβq2σ+2

σ + 1
. (2.6)

The behaviors of ω(q) and E(q) are depicted in Figure 2a and b, respectively. This alternative form can
be useful in computation since (2.6) is more manageable than (2.3). Furthermore,

inf
q>0

E(q) = E(q) = Λ < 0, where q := q(ω) = (−4πσβ)−1/2σ.

0.1 0.2 0.3 0.4 0.5 0.6
q

-1

1

2

3

4
Log(ω(q))

log(ω)

log(ω̃)
q

(a) Behavior of log(ω(q)).

0.1 0.2 0.3 0.4 0.5
q

-0.002

0.002

0.004

E(q)

q

Λ

(b) Behavior of E(q).

Figure 2. Plots of ω(q) and E(q) for q ∈ R+, when σ = 1 and β = −1.

The natural question arising at this point is about the stability of the standing waves. In view of
the application of Grillakis-Shatah-Strauss theory [19], it is first necessary to compute the mass M as
a function of ω and q. Exploiting (1.3), one has that

M(ω) := M(uω) =
q2(ω)
4πω

=
1

4πω

(
−

log(
√
ω/2) + γ

2πβ

)1/σ

. (2.7)
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On the other hand, one can easily check that

M′(ω) =
q2(ω)
4πω2

[(log(
√
ω/2) + γ

)−1

2σ
− 1

]
︸                          ︷︷                          ︸

=:h(ω)

,

whence

M′(ω) > 0 (resp. M′(ω) < 0) ⇐⇒ h(ω) > 0 (resp. h(ω) < 0)

⇐⇒ ω̃ < ω < ω (resp. ω > ω). (2.8)

In addition, as limω→ω̃ M(ω) = limω→+∞M(ω) = 0, there results

sup
ω∈(ω̃,+∞)

M(ω) = M(ω) =
e2γ−1/σ

16π(−4πσβ)1/σ =: µ.

As a consequence, for every value of the mass µ ∈ (0, µ) (or, alternatively, of the energy E ∈ (Λ, 0))
there exists two distinct families of standing waves uω1 , uω2 , such that M(ω1) = M(ω2) = µ, with
ω1 ∈ (ω̃, ω) and ω2 ∈ (ω,+∞).

Analogous results can be obtained writing the mass of the standing waves in terms of q in place of
ω, so that

M(q) =
q2e2γ+4πβq2σ

16π
(2.9)

and
sup
q>0

M(q) = M(q) = µ.

The qualitative behavior of M(ω) and M(q) is depicted in Figure 3.

� � � � ��
ω

������

������

������

������
� (ω)

ω
˜

μ

ω

(a) Behavior of M(ω).

��� ��� ��� ���
�

������

������

������

������

� (�)

μ

q

(b) Behavior of M(q).

Figure 3. Plots of M(ω) and M(q) when σ = 1 and β = −1.

For any µ > 0 there is no ground state of mass µ, i.e., no global minimizer of the energy constrained
on

Vµ := {ψ ∈ V : M(ψ) = µ}.
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This can be easily seen if one defines a sequence {un}n∈N such that

un(x) := 2
√
πµ nG1(

√
n x), M(un) = µ.

Indeed, {un} ⊂ Vµ and

E(un) = −
√

nµ +

(
β(4πµ n)σ

σ + 1
+

log(
√

n/2) + γ

2π

)
(πµ n)1/2 −−−−−→

n→+∞
−∞,

since β < 0. Hence, the stability analysis requires the use of the techniques developed in [19], as shown
in Theorem 2.1.

First, we recall the definition of orbitally stable standing wave. To this aim, preliminarily, we endow
the energy space V with a norm. Due to the several possible decompositions of a function χ ∈ V for
different values of the spectral parameter λ > 0 (see (1.2)), in order to obtain a suitable norm, one has
to fix a value λ = λ > 0 and then set

‖χ‖2
λ

:= ‖χλ‖
2
H1(R2) +

|q|2

4πλ
.

Clearly, any other choice of λ gives rise to an equivalent norm. In this section we will set λ = 1 for the
sake of simplicity.

Definition 2.1. The standing wave uω is said to be orbitally stable whenever for every ε > 0 there
exists δ > 0 such that: if ‖ψ0 − eı ηuω‖1 < δ, for some η ∈ R, and ψ(t) is a solution of (1.6) on [0,T ∗)
with initial condition ψ0, then ψ(t) can be continued to a solution on [0,+∞) and

sup
t∈R+

inf
η∈R
‖ψ(t) − eıηuω‖1 < ε.

Otherwise the standing wave is called unstable.

Theorem 2.1 (Stability in the focusing case). Let σ > 1/2 and β < 0. The standing waves defined in
(2.1) and (2.2) are orbitally stable if ω ∈ (ω̃, ω) and unstable if ω > ω (where ω is given in (2.4)).

Note that the previous theorem entails that, for every mass µ ∈ (0, µ), there is a pair of standing
waves of mass µ, where the one with low frequency is stable, while the one with high frequency is
unstable.

Remark 2.1. The assumptionσ > 1/2 is only related to the local well-posedness of (1.6) proved in [13].
It is likely that it could be dropped by means of a more refined analysis of the local well-posedness and
hence is not actually relevant in the stability analysis.

The proof of Theorem 2.1 is based on [19, Theorem 3]. For the sake of completeness, we recall
here the statement suitably adapted to (1.6).

Theorem 2.2. Assume that:

(A1) there exists a local solution of (1.6), which preserves mass and energy along the flow;
(A2) there exist ω2 > ω1 > 0 and a family (uω)ω of standing waves of (1.6) such that the a mapping

(ω1, ω2) 3 ω 7→ uω ∈ V is of class C1;

Mathematics in Engineering Volume 3, Issue 2, 1–15.
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(A3) letting
Sω : V → R, Sω(u) := E(u) + ωM(u),

be the action functional associated with (1.6) and defining the operator

Hω : V → V∗, Hω := d2Sω(uω) (2.10)

(d2Sω denoting the second Fréchet differential), suppose that, for every ω ∈ (ω1, ω2),

(i) Hω has exactly one negative simple eigenvalue,
(ii) the kernel of Hω coincides with the span of uω,

(iii) the rest of σ(Hω) is positive and bounded away from zero.

If the function
D : (ω1, ω2)→ R, D(ω) := Sω(uω),

is strictly convex, then uω is orbitally stable. If, on the contrary, D is strictly concave, then uω is
unstable.

Proof of Theorem 2.1. (A1) of Theorem 2.2 has been proven by [13, Theorem 1.1 & Theorem 1.2],
while the fulfillment of (A2) is a direct consequence of the form of the standing waves given by (2.1)
and (2.2), with ω1 = ω̃ and ω2 = +∞. Concerning (A3) we argue as follows.

As d2M(uω) = 2 × I, it is sufficient to compute only d2E(uω). Since E is a functional of class C2 we
can compute the Gâteaux second differential in place of the Fréchet second differential, i.e.,

d2E(uω)[h, k] =
∂2E(uω + νh + τk)

∂ν∂τ

∣∣∣∣∣∣
ν=τ=0

.

In addition, for the sake of simplicity, we can set λ = ω in the definition of E. Therefore, standard
computations yields

∂E(uω + νh + τk)
∂τ

= 2Re
{
〈ν∇hω + τ∇kω,∇kω〉 + ω

(
〈νhω + τkω, kω〉 − 〈uω + νh + τk, k〉

)
+

+ qk
(
q∗(ω) + νq∗h + τq∗k

) log(
√
ω/2) + γ

2π
+ βqk

(
q(ω) + νqh + τqk

)σ(q∗(ω) + νq∗h + τq∗k
)σ+1

}
,

so that

∂2E(uω + νh + τk)
∂ν∂τ

= 2Re
{
〈∇hω,∇kω〉 + ω

(
〈hω, kω〉 − 〈h, k〉

)
+

+ qkq∗h
log(
√
ω/2) + γ

2π
+ σβqkqh

(
q(ω) + νqh + τqk

)σ−1(q∗(ω) + νq∗h + τq∗k
)σ+1

+

+ (σ + 1)βqkq∗h
(
q(ω) + νqh + τqk

)σ(q∗(ω) + νq∗h + τq∗k
)σ}

Mathematics in Engineering Volume 3, Issue 2, 1–15.
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and hence

∂2E(uω + νh + τk)
∂ν∂τ

∣∣∣∣∣∣
ν=τ=0

= 2Re
{
〈∇hω,∇kω〉 + ω

(
〈hω, kω〉 − 〈h, k〉

)}
+

+
log(
√
ω/2) + γ

π
Re{qkq∗h} + 2βq2σ(ω)Re{σq∗kq∗h + (σ + 1)q∗kqh}. (2.11)

Now, if we split each quantity as real and imaginary part, i.e.,

h = hr + ıhi, k = kr + ıki,

hω = hr
ω + ıhi

ω, kω = kr
ω + ıki

ω,

qh = qr
h + ıqi

h, qk = qr
k + ıqi

k,

then (2.11) reads
∂2E(uω + νh + τk)

∂ν∂τ

∣∣∣∣∣∣
ν=τ=0

= B1[hr, kr] + B1[hi, ki],

where B1, B2 are two sesquilinear forms given by

B1[hr, kr] := 2
(
〈∇hr

ω,∇kr
ω〉 + ω

(
〈hr

ω, k
r
ω〉 − 〈h

r, kr〉
))

+

(
log(
√
ω/2) + γ

π
+ 2β(2σ + 1)q2σ(ω)

)
qr

kq
r
h

and

B2[hi, ki] := 2
(
〈∇hi

ω,∇ki
ω〉 + ω

(
〈hi

ω, k
i
ω〉 − 〈h

i, ki〉
))

+

(
log(
√
ω/2) + γ

π
+ 2βq2σ(ω)

)
qi

kq
i
h.

Furthermore, one notes that B1, B2 are the sesquilinear form (restricted to real-valued functions)
associated with the operators Hα1 , Hα2 : L2(R2)→ L2(R2) with domains

dom(Hα j) :=
{
ψ ∈ L2(R2) : ψ = φλ + qGλ, φλ ∈ H2(R2), q ∈ C,

φλ(0) =

(
αi +

log(
√
λ/2) + γ

2π

)
q
}
, i = 1, 2, (2.12)

with λ > 0, and action

(Hαi + λ)ψ := (−∆ + λ)φλ, ∀ψ ∈ dom(Hαi), i = 1, 2, (2.13)

where
α1 = (2σ + 1)βq2σ(ω), α2 = βq2σ(ω). (2.14)

Summing up,
∂2E(uω + νh + τk)

∂ν∂τ

∣∣∣∣∣∣
ν=τ=0

= 2(hr, hi)
(
Hα1 0
0 Hα2

) (
kr

ki

)
,

Mathematics in Engineering Volume 3, Issue 2, 1–15.
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whence

d2E(uω) = 2
(
Hα1 0
0 Hα2

)
and, consequently,

Hω = 2
(
Hα1 + ω 0

0 Hα2 + ω

)
.

In order to verify (i), (ii) and (iii) of (A3), it suffices to observe that

σ(Hα1) =
{
−ω e−8π βσq2σ}

∪ [0,+∞), σ(Hα2) = {−ω} ∪ [0,+∞),

with −ω e−8πβσq2σ
and −ω simple eigenvalues, and that uω is the eigenfunction associated with −ω.

Indeed, this entails

σ(Hω) =
{
ω(1 − e−8πβσq2σ

)
}
∪ {0} ∪ [ω,+∞), (2.15)

which proves that Hω possesses one simple negative eigenvalue (since 1− e−8πβσq2σ
< 0, as β < 0), that

the kernel of Hω is the span of uω and that the rest of the spectrum is positive and bounded away from
zero.

Finally, it is sufficient to detect for which values of ω the scalar function D(ω) is strictly convex
and for which values of ω it is strictly concave. However, as uω is a standing wave, dSω(uω) = 0 (dSω
denoting the Fréchet differential) so that D′′(ω) = M′(ω). Therefore, recalling (2.8), one can conclude
the proof. �

3. Defocusing case

One can easily check that there exists a family of standing waves in the defocusing case β > 0 as
well:

ψω(t, x) := eıωt eıη uω(x), uω(x) := q(ω)Gω(x), q(ω) :=
(
−

log
(√
ω/2

)
+ γ

2πβ

)1/2σ

(3.1)

with η ∈ R, defined for

ω ∈ (0, ω̃), where ω̃ := 4e−2γ.

The behavior of q(ω) is shown in Figure 4a.
In addition, simple computations show that the form of E(ω) is still given by (2.3), but in this case

the function E(ω) is unbounded from below, due to the fact that β > 0. The behavior of E(ω) is depicted
in Figure 4b.
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(a) Behavior of q(ω).
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Figure 4. Plots of q(ω) and E(ω) for ω ∈ (0, ω̃), when σ = 1 and β = 1.

From (3.1) one has that the function q(ω) is invertible. Again we get that ω(q) reads as (2.5) and,
plugging (2.5) into (2.3), one obtains (2.6) for E(q). The behavior of ω(q) and E(q) is depicted in
Figure 5a and b.
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(a) Behavior of ω(q).
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(b) Behavior of E(q).

Figure 5. Plots of ω(q) and E(q) for q ∈ R+, when σ = 1 and β = 1.

Remark 3.1. Let us point out a relevant difference between the focusing and the defocusing case: M(ω)
and M(q), given by (2.7) and (2.9), respectively, are strictly monotone on their domain with range R+.
In particular, this means that, in the defocusing case, for every µ ∈ R+, there exists a unique (up to a
phase factor) standing wave uωµ of mass µ.

Concerning the stability of these standing waves, one can prove the following

Theorem 3.1 (Stability in the defocusing case). Let σ > 1/2 and β > 0. The standing waves defined
by (3.1) are orbitally stable for every ω ∈ (0, ω̃).

The proof of Theorem 3.1 is analogous to that of Theorem 2.1. The main difference is that the key
tool now is [19, Theorem 1], instead of [19, Theorem 3]. For the sake of completeness, we recall also
this statement (again, suitably adapted to (1.6)).

Theorem 3.2. Assume that (A1) and (A2) of Theorem 2.2 are satisfied. If, in addition, the operator
Hω, defined by (2.10), satisfies (ii) and (iii) of (A3) in Theorem 2.1, then uω is orbitally stable.
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Proof of Theorem 3.1. Arguing as in the proof of Theorem 2.1 one immediately sees that (A1) and
(A2) are fulfilled, with ω1 = 0 and ω2 = ω̃.

In addition, following again the proof of Theorem 2.1, one obtains that

Hω = 2
(
Hα1 + ω 0

0 Hα2 + ω

)
with Hα1 , Hα2 defined in (2.12) and (2.13) and α1, α2 given by (2.14). Hence, the spectrum of Hω is
given again by (2.15), but now, as β > 0 and ω ∈ (0, ω̃), there is no negative eigenvalue so that (ii) and
(iii) are satisfied and the proof is complete. �

Moreover, in the defocusing case it is possible to give a further characterization of the standing
waves, given by the following

Theorem 3.3 (Ground states in the defocusing case). Let β > 0 and µ > 0. Then, the energy functional
E restricted to the manifold Vµ has a unique (up to a phase factor) global minimizer, which is of the
form (3.1) with ω = ωµ, where ωµ is the unique solution of

log(2/
√
ω) − γ = 2πβ(4πωµ)σ. (3.2)

Proof. Preliminarily, one can see that (3.2) is equivalent to M(ω) = µ with M(ω) defined by (2.7).
Hence, by Remark 3.1, there is a unique solution ωµ for any value of µ > 0. It is thus clear that, if a
minimizer does exist, then it has to be equal to uωµ up to phase factor.

First, let us fix λ = ωµ in (1.7) and in the definition of the norm of Vµ, which is the same of
V . Consider, therefore, a minimizing sequence {ψn} = {φωµ,n + qnGωµ} ⊂ Vµ for E. As ‖ψn‖

2 = µ

and β > 0, E is coercive on Vµ and hence ‖ψn‖ωµ 6 C for every n. As a consequence there exists
ψ = φωµ + qGωµ ∈ V such that, up to subsequences,

ψn
w
−−−⇀
n→∞

ψ, in L2(R2),

φωµ,n
w
−−−⇀
n→∞

φωµ , in H1(R2),

qn −−−→
n→∞

q, in C.

Furthermore, by the weak lower semicontinuity of E

E(ψ) 6 lim inf
n→+∞

E(ψn),

and, by the weak lower semicontinuity of the norms, ‖ψ‖2 6 µ. Hence, if one can prove that ‖ψ‖2 = µ,
the proof is complete.

To this aim, first note that

E(ψ) > −ωµ‖ψ‖
2 +

(
β|q|2σ

σ + 1
+

log(√ωµ/2) + γ

2π

)
|q|2

> −ωµµ +

(
β|q|2σ

σ + 1
+

log(√ωµ/2) + γ

2π

)
|q|2 =: f (|q|).
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Assuming that q is real-valued (which is not restrictive), one can check that f is minimized for q =

q(ωµ) and that

f
(
q(ωµ)

)
= −

q2(ωµ)
4π

−
σβq2σ+2(ωµ)

σ + 1
= E(uωµ).

Therefore,
E(ψ) > E(uωµ)

and, since M(uωµ) = µ, this implies that uωµ is the minimizer of E on Vµ up to a phase factor. �
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