In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q0∈M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C0∞(M∖{q0}) is essentially self-adjoint in L2(M). A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C0∞(N∖{q0}) is never essentially self-adjoint in L2(N), if dim⁡N≤3. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.

Point interactions for 3D sub-Laplacians / Adami, R.; Boscain, U.; Franceschi, V.; Prandi, D.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 38:4(2021), pp. 1095-1113. [10.1016/j.anihpc.2020.10.007]

Point interactions for 3D sub-Laplacians

Adami R.;
2021

Abstract

In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q0∈M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C0∞(M∖{q0}) is essentially self-adjoint in L2(M). A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C0∞(N∖{q0}) is never essentially self-adjoint in L2(N), if dim⁡N≤3. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.
File in questo prodotto:
File Dimensione Formato  
2875552_preprint.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 517.11 kB
Formato Adobe PDF
517.11 kB Adobe PDF Visualizza/Apri
10.1016-j.anihpc.2020.10.007.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 421.35 kB
Formato Adobe PDF
421.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2875552