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POINT INTERACTIONS FOR 3D SUB-LAPLACIANS

RICCARDO ADAMI1, UGO BOSCAIN2, VALENTINA FRANCESCHI3,
AND DARIO PRANDI4

Abstract. In this paper we show that, for a sub-Laplacian ∆ on a 3-dimensional
manifold M , no point interaction centered at a point q0 ∈ M exists. When M is
complete w.r.t. the associated sub-Riemannian structure, this means that ∆ acting
on C∞

0 (M \ {q0}) is essentially self-adjoint in L2(M). A particular example is the
standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what
happens in a Riemannian manifold N , whose associated Laplace-Beltrami operator
acting on C∞

0 (N \{q0}) is never essentially self-adjoint in L2(N), if dimN ≤ 3. We
then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a
vanishing moment of inertia, rotating around its center of mass.

Keywords. Essential self-adjointness, Heisenberg group, sub-Laplacian, point in-
teractions, sub-Riemannian geometry, rotation of molecules.

1. Introduction

Let (M, g) be a Riemannian manifold endowed with a smooth volume ω (one can
think, e.g., of the Riemannian volume). The associated Laplace operator is the op-
erator on L2(M,ω) acting on C∞0 (M) and defined by ∆ω = divω ◦∇. Here, C∞0 (M)
is the space of compactly supported smooth functions on M , and divω denotes the
divergence w.r.t. the measure ω and ∇ is the Riemannian gradient. A fundamental
issue is the essential self-adjointness of ∆ω, i.e., whether it admits a unique self-
adjoint extension in L2(M,ω). Indeed, the essential self-adjointness of ∆ω implies
the well-posedeness in L2(M,ω) of the Cauchy problems for the heat and Schrödinger
equations, that read, respectively,

(1.1)

{
∂tφ = ∆ωφ,

φ|t=0 = φ0 ∈ L2(M,ω),

{
i∂tψ = −∆ωψ,

ψ|t=0 = ψ0 ∈ L2(M,ω).

Roughly speaking, when ∆ω is not essentially self-adjoint, the above Cauchy prob-
lems are not well-defined without additional requirements, as for instance boundary
conditions on ∂M .

The self-adjointness of ∆ω is related with geometric properties of (M, g), as is
evident from the following classical result.

Theorem 1.1. Let (M, g) be a Riemannian manifold that is complete as metric
space, and let ω be any smooth volume on M . Then, ∆ω is essentially self-adjoint in
L2(M,ω).

This result is due to Gaffney [18] when ω is the Riemannian volume. A simpler
argument, which generalizes to arbitrary smooth measures, is given by Strichartz [34].
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2 R. ADAMI, U. BOSCAIN, V. FRANCESCHI, AND D. PRANDI

A simple way to obtain non-complete Riemannian manifolds from a given complete
one (M, g), is by removing a point q0 ∈ M . Considering ∆ω on M \ {q0} yields the

pointed Laplace operator ∆̊ω. We have the following.

Theorem 1.2. Let (M, g) be a Riemannian manifold that is complete as metric space,

and let ω be any smooth volume on M . Let ∆̊ω be the pointed Laplace operator at
q0 ∈M . Then ∆̊ω is essentially self-adjoint in L2(M,ω) if and only if n ≥ 4.

The above result for the Euclidean space endowed with the Lebesgue measure is a
consequence of [29, Ex. 4, p. 160], while the case of Riemannian manifolds where ω
is the Riemannian volume is treated in [12]. Similar arguments can be applied when
ω is an arbitrary smooth volume.

Theorem 1.2 is relevant in physics. Indeed, in non-relativistic quantum mechan-
ics, self-adjoint extensions of the pointed Laplace operator can be used to construct
potentials concentrated at a point, the so-called point interactions, as, e.g.,

(1.2)

{
i∂tψ = (−∆ω + αδq0)ψ, α ∈ R,
ψ(0, q) = ψ0(q).

Here, δq0 is a Dirac-like potential representing a point interaction. Dirac δ and δ′ are
widely used in modelling of quantum systems, since Fermi’s paper [13] up to contem-
porary applications [6, 1, 5] . In this language, Theorem 1.2 can be interpreted as the
fact that point interactions do not occur in dimension 4 and higher or, equivalently,
that single points are seen by Laplace operators only in dimension less or equal than
3.

In this paper we study the essential self-adjointness of sub-Laplacians, i.e., the
generalization of the Riemannian Laplace operators to sub-Riemannian manifolds.
Let us briefly introduce this setting. We refer to [2, 25] for a more detailed treatement.

1.1. Sub-Riemannian manifold. A sub-Riemannian structure on a smooth man-
ifold M is given by a family of smooth vector fields {X1, . . . , Xm} ⊂ Vec(M) satis-
fying the Hörmander condition. Namely, let D = span{X1, . . . , Xm}, pose D1 = D
and recursively define Ds = Ds−1 + [D,Ds−1], s ∈ N, s ≥ 2. This defines the flag
D1 ⊂ . . . ⊂ Ds ⊂ . . . ⊂ Vec(M). Letting Dsq = {X(q) | X ∈ Ds}, s ≥ 1, the
Hörmander condition then amounts to the requirement that for any q ∈ M there
exists r = r(q) such that Drq = TqM . A sub-Riemannian manifold is then defined as
the pair (M, {X1, . . . , Xm}). With abuse of notation, we will sometimes denote it by
M .

On a sub-Riemannian manifold the distance between two points q1, q2 ∈ M is
defined by

(1.3) d(q1, q2) = inf

{∫ 1

0

√√√√ m∑
i=1

ui(t)2dt

∣∣∣∣ γ : [0, 1]→M, γ̇(t) =
m∑
i=1

ui(t)Xi(γ(t)),

γ(0) = q0, γ(1) = q1, ui ∈ L1([0, 1],R), i = 1, . . . ,m

}
.

Owing to the Rashevskii-Chow theorem [2], (M,d) is a metric space inducing on M its
original topology. The set of vector fields {X1, . . . , Xm} is called a generating frame
and it is a generalization of Riemannian orthonormal frames. As for the latter, there
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are different choices of generating frames giving rise to the same metric space (M,d),
which is the true intrinsic object. For an equivalent definition of sub-Riemannian
manifold that does not employ generating frames, see, e.g., [2].

The above definition includes several geometric structures [2]. Indeed, letting
k(q) = dim(Dq), it holds that:

• If k(·) ≡ n, one obtains a Riemannian structure.
• If k(·) ≡ k < n, one obtains a classical sub-Riemannian structure. In this case,

we will identify D ⊂ Vec(M) with the vector distribution
⊔
q∈M Dq ⊂ TM .

• if k(·) is not constant, one obtains a so-called rank-varying sub-Riemannian
structure. This includes what are usually called almost-Riemannian structures
[4, 2].

Motivated by the above observations, we say that a sub-Riemannian structure is
genuine if k(q) < n for all q ∈M .

Remark 1.3. In the first two cases above, if k(·) ≡ m the family of (linearly in-
dependent) vector fields {X1, . . . , Xm} is a global orthonormal frame for the (sub-
)Riemannian structure. Observe that, due to topological restrictions, such a frame
does not always exist. However, if k(·) is locally constant around q0 ∈ M , there
always exists a local orthonormal frame1 around q0.

In this paper a particular role is played by 3-dimensional structures.

Definition 1.4. Consider a genuine sub-Riemannian structure on a 3-dimensional
manifold M . We say that q ∈ M is a contact point if D2

q = TqM . If every point of
M is contact, we say that the structure is a 3-dimensional contact structure.

In other words, in the genuine 3-dimensional case, a contact point is a point in
which the full tangent space is generated by the vector fields X1, . . . , Xm and their
first Lie brackets. Since M is 3-dimensional, contact points coincide with what in the
literature are called regular points.

1.2. Sub-Laplacians. Let {X1, . . . , Xm} be a generating frame for the sub-Rieman-
nian structure on M . Given a smooth volume ω the associated sub-Laplacian acting
on C∞0 (M) is defined as ∆ω = divω ◦∇ where divω is computed with respect to the
volume ω and ∇ is the sub-Riemannian gradient, whose expression is

(1.4) ∇φ =
m∑
i=1

Xi(φ)Xi, φ ∈ C∞(M).

Such an operator is intrinsic in the sense that it does not depend on the particular
choice of generating frame. We have then,

(1.5) ∆ω =
m∑
i=1

X2
i + (divωXi)Xi.

Notice the presence of the “sum of squares” of the vector fields of the generating
frame plus some first order terms guaranteeing the symmetry of ∆ω w.r.t. the volume
ω.

1That is, one can find an open neighborhood U of q0 and a family of linearly independent vector
fields {Y1, . . . , Yk(q0)} ⊂ Vec(M), such that Dq = span{Y1(q), . . . , Yk(q0)(q)} for any q ∈ U , and that

the sub-Riemannian distances defined by {Y1, . . . , Yk(q0)} and {X1, . . . , Xm} coincide on U .
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As a consequence of Hörmander condition, ∆ω is hypoelliptic [22], and we have the
following generalization of Theorem 1.1.

Theorem 1.5 (Strichartz, [33]). Let M be a sub-Riemannian manifold that is com-
plete as a metric space, and let ω be any smooth volume on M . Then, ∆ω is essentially
self-adjoint on L2(M,ω).

The main object of interest in this paper is the pointed sub-Laplacian ∆̊ω at a point
q0 ∈ M . Similarly to the Riemannian case, this is defined as the sub-Laplacian ∆ω

on M \ {q0}.

1.3. Main results. One of the main features of sub-Riemannian manifolds, is the
existence of several natural notions of dimension. Although for Riemannian manifolds
these are all coinciding, this is not the case in genuine sub-Riemannian manifolds. For
instance, in the case of a classical sub-Riemannian manifold, some relevant dimensions
are:

• the dimension of the space of admissible velocities k,
• the topological dimension n,
• the Hausdorff dimension Q of the metric space (M,d),

where k < n < Q, see [24]2. It is then a natural question to understand which of these
dimensions are relevant for essential self-adjointness of the pointed sub-Laplacian. In
particular, since in a 3D contact sub-Riemannian manifold we have k = 2, n = 3,
Q = 4, in view of Theorem 1.2, we focus on pointed sub-Laplacians at contact points
of genuine 3D sub-Riemannian manifolds. For these structures we prove the following.

Theorem 1.6. Let M be a genuine 3-dimensional sub-Riemannian manifold that is
complete as metric space, and let ω be any smooth volume on M . Let q0 ∈ M be
a contact point, and ∆̊ω be the pointed sub-Laplacian at q0. Then ∆̊ω, with domain
C∞0 (M \ {q0}), is essentially self-adjoint in L2(M,ω).

The above result follows from Theorem 5.1, and shows that, regarding the essen-
tial self-adjointness of pointed sub-Laplacians, 3D sub-Riemannian manifolds behave
like Riemannian manifolds of dimension at least 4. This suggests that the relevant
dimension for self-adjointness is not the topological one, and that a more suitable
candidate seems to be the Hausdorff dimension.

A crucial step in establishing Theorem 1.6 is the following corresponding result for
the celebrated Heisenberg group H1.

Theorem 1.7. The operator (∂x − y
2
∂z)

2 + (∂x + x
2
∂z)

2 on C∞0 (R3 \ {(0, 0, 0)}) is
essentially self-adjoint in L2(R3, dx dy dz).

When q0 is not a contact point, or M is of dimension larger than 3, we conjecture
that Theorem 1.6 still holds. However, our techniques are not easily extended to
higher dimensions. In dimension 2, classical sub-Riemannian manifolds do not exist,
while for rank varying structures we have two cases. Either the point q0 is Riemann-
ian and then we can conclude that the pointed Laplace operator is not essentially
self-adjoint; or q0 is not Riemannian and in this case we conjecture that the pointed

2Notice that Q = supq∈M Q(q) where Q(q) is the local Hausdorff dimension, which can be com-

puted via the flag D1
q ⊂ . . . ⊂ D

k(q)
q = TqM . In particular, Q is possibly infinite.
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α
r

z

y
x `

Figure 1. The thin molecule is obtained by considering the above rod
and letting r → 0. The thin degree of freedom is α.

Laplace operator is not essentially self-adjoint as well. However, the techniques nec-
essary to study this case are very different from those developed in this paper and we
do not treat this case here.

1.4. Rotations of a thin molecule. We now apply Theorem 1.6 to the Schrödinger
evolution on SO(3) of a thin molecule rotating around its center of mass, described
as follows. Consider a rod-shaped molecule of mass m > 0, radius r > 0, and length
` > 0, as in Figure 1. We denote by z the principal axis of the rod, and by x and y
two orthogonal ones. Then, the moments of inertia of the molecule are

(1.6) Ix = Iy = I := m
3r2 + `2

12
, Iz = m

r2

2
.

Letting (ωx, ωy, ωz) be the angular velocity of the molecule and Lx = Iωx, Ly = Iωy,
Lz = Izωz be the corresponding angular momenta, the classical Hamiltonian is

(1.7) H =
1

2

(
Iω2

x + Iω2
y + Izω

2
z

)
=

1

2

(
L2
x

I
+
L2
y

I
+
L2
z

Iz

)
.

Letting r → 0, while keeping ` and m constant, we have that Iz → 0, and the classical
Hamiltonian reads

(1.8) Hthin =
1

2I

(
L2
x + L2

y

)
.

The corresponding Schrödinger equation is

(1.9) i~
dψ

dt
= Ĥthinψ, where Ĥthin =

1

2I

(
L̂2
x + L̂2

y

)
.
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Here, L̂x, L̂y, (and L̂z) are the three angular momentum operators given by (in the
following α, β, γ denote the Euler angles)

L̂x = iFx, Fx = cosα cot β
∂

∂α
+ sinα

∂

∂β
− cosα

sin β

∂

∂γ
,(1.10)

L̂y = iFy, Fy = sinα cot β
∂

∂α
− cosα

∂

∂β
− sinα

sin β

∂

∂γ
,(1.11)

L̂z = iFz, Fz = − ∂

∂α
.(1.12)

Since [Fx, Fy] = Fz we have that (SO(3), {Fx, Fy}) is a contact sub-Riemannian
manifold. Moreover, being SO(3) unimodular, we have that Fx, Fy, Fz are divergence-
free with respect to the Haar measure dh (see [3]) and we have that the corresponding
sub-Laplacian is

∆dh = F 2
x + F 2

y .

It follows that Ĥthin = − 1
2I

∆dh.
When considering the Schrödinger equation (1.9) on functions of (α, β, γ), we are

describing the evolution of a thin molecule in which the thin degree of freedom (i.e.,
the angle α of the rod w.r.t. the z axis) is part of the configuration space. The

essential self-adjointness of the pointed sub-Laplacian ∆̊dh on SO(3) \ {(α0, β0, γ0)}
given by Theorem 1.6 can be interpreted in the following way: A point interaction
centered at (α0, β0, γ0) does not affect the evolution of a thin molecule.

Notice that this would not be the case if the molecule were not thin. Indeed in
this case the quantum Hamiltonian would have been proportional to a left-invariant
Riemannian Laplacian on SO(3), and by Theorem 1.2 the elimination of a point from
the manifold crashes its essential self-adjointness.

Moreover, if the evolution of the thin molecule is considered on the 2D sphere
instead than on SO(3), meaning that we are totally forgetting the thin degree of
freedom, then the elimination of a point would break the essential self-adjointness of
the Laplacian as well.

1.5. Structure of the paper and strategy of proof. Sections 2 and 3 are devoted
to preliminaries on the Heisenberg group and some of the functional analytic prop-
erties of sub-Riemannian manifolds, respectively. The remaining sections contain the
proof of the main result of the paper, Theorem 5.1. This is obtained by first establish-
ing Theorem 1.7 in Section 4, which is then extended to 3D genuine sub-Riemannian
manifolds in Section 5.

More precisely, the proof of Theorem 1.7 consists in first reducing the problem
of essential self-adjointness to the absence of L2 solutions of the equation (∆ω +
i)θ = ϕ, where ϕ is a linear combination of derivatives of the Dirac delta mass at
0, see Lemma 4.1. This criterion is then verified in Section 4.2 by exploiting the
non-commutative Fourier transform associated with the Heisenberg group structure.
Then, in Theorem 4.4, we localize the above result, showing that the self-adjoint
extensions of the pointed sub-Laplacian at 0 defined on a domain Ω ⊂ H1 coincide
with those of the (standard) sub-Laplacian on the same domain. The latter result is
then generalized to any 3D genuine sub-Riemannian manifold via local normal forms,
in Section 5.
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Finally, in Appendix A, we show how a criterion for essential self-adjointness based
on an Hardy inequality with constant strictly bigger than 1, exploited e.g. in [17,
26, 28], fails for the Heisenberg group. This, in particular, raises a crucial criticism
against the results contained in [35], and forces us to consider the above strategy of
proof for Theorem 5.1.

2. The Heisenberg group H1

The Heisenberg group H1 is the nilpotent Lie group on R3 associated with the
non-commutative group law

(2.1) (x, y, z) ∗ (x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
.

The associated Haar measure, i.e., the only (up to multiplicative constant) left-
invariant measure on H1, is the standard Lebesgue measure L3 of R3. One can
check that H1 is unimodular, that is, this measure is also right-invariant.

A basis for the Lie algebra of left-invariant vector fields is given by

(2.2) XH(x, y, z) = ∂x −
y

2
∂z, YH(x, y, z) = ∂y +

x

2
∂z, ZH = ∂z.

These satisfy the commutator relations [XH, YH] = ZH and [XH, ZH] = [YH, ZH] = 0.
The sub-Riemannian structure on H1 is defined by {XH, YH}. This is a global or-
thonormal frame, and thanks to the above commutator relations, the sub-Riemannian
manifold (H1, {XH, YH}) is contact.

We let ∇H be the sub-Riemannian gradient of H1. Then, the Heisenberg sub-
Laplacian is the associated sub-Laplacian w.r.t. the Lebesgue measure, that reads

(2.3) ∆H = X2
H + Y 2

H = ∂2
x + ∂2

y +
x2 + y2

4
∂2
z + (x∂y − y∂x)∂z.

Remark 2.1 (Fundamental solution). By [15, Thm. 2], the fundamental solution Γ :
H1 \ {0} → R of the operator −∆H is

(2.4) Γ(p) =
1

(8π)N(p)2
.

Here, N is the Koranyi norm (see [11, Section 2.2.1]), given by

(2.5) N(x, y, z) = ((x2 + y2)2 + 16z2)1/4.

A simple computation shows that Γ is not square-integrable on any compact set
containing the origin nor on its complement. This is in contrast with what happens
for the fundamental solution of the Euclidean Laplacian on R3, ΓR3(p) = (4π|p|)−1,
which is square-integrable near the origin.

Associated with the group structure of H1 we have the family of anisotropic dila-
tions %λ : H1 → H1, λ > 0, defined by

(2.6) %λ(x, y, z) := (λx, λy, λ2z).

One can check that the sub-Riemannian distance from the origin is 1-homogeneous
w.r.t. these dilations. Moreover, we have

(2.7) L3(%λ(Ω)) = λ4L3(Ω), ∀λ > 0.
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As a consequence of these facts, the Hausdorff dimension of H1 is 4 and H4 = L3.
That is, one more that its topological dimension.

3. Sub-Riemannian Sobolev spaces

Let M be sub-Riemannian manifold with local generating family {X1, . . . , Xm},
endowed with a smooth and positive measure ω. We denote by L2(M,ω) (or L2(M))
the complex Hilbert space of (equivalence classes of) functions u : M → C with scalar
product

(3.1) (u, v) =

∫
M

u v̄ dω, u, v ∈ L2(M,ω),

where the bar denotes the complex conjugation. The corresponding norm is denoted
by ‖u‖2

L2(M) = (u, u). Similarly, L2(TM,ω) (or L2(TM)) is the complex Hilbert space

of sections of the complexified tangent bundle X : M → TMC, with scalar product

(3.2) (X, Y ) =

∫
M

gq(X(q), Y (q)) dω(q), X, Y ∈ L2(TM,ω).

Here, gq is the complexification of the scalar product on Dq defined by polarization
from the norm

(3.3) |ξ|2q = min


√√√√ m∑

i=1

|ui|2
∣∣∣∣ ξ =

m∑
i=1

uiXi(q)

 , ξ ∈ Dq.

The corresponding norm is ‖X‖2
L2(M) = (X,X). Observe that in the above the

minimum can be removed if {X1, . . . , Xm} is an orthonormal frame. In this case, we
have

(3.4) ‖X‖2
L2(M) =

∫
M

k∑
i=1

|ui|2 dω, where X =
k∑
i=1

uiXi.

Given an open set Ω ⊂ M , the space C∞0 (Ω) is the space of smooth functions
compactly supported in Ω. For Ω ⊂ M we then let H2

0 (Ω, ω) (or H2
0 (Ω)) to be the

closure of C∞0 (Ω) w.r.t. the norm

(3.5) ‖u‖2
H2(Ω) = ‖u‖2

L2(Ω) + ‖∆ωu‖2
L2(Ω),

where ∆ω is the sub-Laplacian (1.5). Namely, H2
0 (Ω) is the domain of the closure

of ∆ω as an operator on L2(Ω) with domain C∞0 (Ω). In the following proposition
we present a rather classical result ensuring that this space is actually the horizontal
second-order Sobolev space.

Proposition 3.1. Let Ω ⊂M be open and fix q ∈ Ω. Then, for any open neighborhood
U ⊂ Ω of q there exists an open neighborhood V ⊂ U of q and C > 0 such that we
have,

(3.6) ‖∇u‖2
L2(Ω) +

m∑
i,j=1

‖XiXju‖2
L2(V ) ≤ C‖u‖2

H2(Ω), u ∈ C∞0 (Ω).
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Proof. Let u ∈ C∞0 (Ω). We start by observing that, since (∆ωu, u) = −‖∇u‖2
L2(Ω),

by Cauchy-Schwarz and Young’s inequality we have

(3.7) ‖∇u‖2
L2(Ω) ≤ ‖∆ωu‖L2(Ω)‖u‖L2(Ω) ≤

1

2
‖∆ωu‖2

L2(Ω) +
1

2
‖u‖2

L2(Ω).

The result follows by [31, Theorem 18.d] (see also [9, Remark 53]). In fact, the latter
and (3.7) yield the existence of an open set V ⊂ U such that

(3.8)
m∑

i,j=1

‖XiXju‖2
L2(V ) ≤ C‖u‖2

H2(U) ≤ C‖u‖2
H2(Ω).

Here, the last inequality follows since suppu ⊂ Ω. �

The following result highlights the relevance of H2
0 (Ω) for our purposes. We recall

that a self-adjoint extension of a symmetric operator A on an Hilbert space H is a
self-adjoint operator T such that DomA ⊂ DomT and A∗u = Tu for any u ∈ DomT .

Proposition 3.2. Let Ω ⊂M be open and fix p ∈ Ω. Then, if H2
0 (Ω) = H2

0 (Ω\{p}),
the self-adjoint extensions of the sub-Laplacian with domain C∞0 (Ω) and C∞0 (Ω\{p})
coincide.

Proof. By [30, Theorem VIII.1], any self-adjoint extension of a given operator is also
a self-adjoint extension of its closure, and viceversa. In particular, if two operators
have the same closure, then also their self-adjoint extensions coincide. In our case,
the assumption H2

0 (Ω) = H2
0 (Ω \ {p}) entails exactly that the closure of ∆ω with

domains C∞0 (Ω) and C∞0 (Ω \ {p}) are the same. �

In the remainder of the section we derive some essential properties of H2
0 (Ω).

Proposition 3.3. Let Ω ⊂ Ω′ ⊂ M be open sets with smooth boundary, and u ∈
L2(Ω). Then, u ∈ H2

0 (Ω) if and only if ue ∈ H2
0 (Ω′), where

(3.9) ue(p) :=

{
u(p), if p ∈ Ω,

0, otherwise.

Proof. The result for the Euclidean Sobolev space of order one is well-known [10,
Proposition 9.18]. The same arguments extends in a straightforward way to the case
under consideration. �

In view of the above, for any Ω ⊂ Ω′ ⊂ H1 we will always identify H2
0 (Ω) with

the set of the corresponding ue in H2
0 (Ω′). In particular, for any smooth open set

Ω1,Ω2 ⊂M it holds

(3.10) H2
0 (Ω1) ∩H2

0 (Ω2) = H2
0 (Ω1 ∩ Ω2).

In the sequel we will need the following simple fact, which we will apply with
Ω1 = Ω \ B̄ε/2(p) and Ω2 = Bε(p), where Ω is a smooth open set, p ∈ Ω, and Br(p)
stands for the open ball at p of radius r > 0.

Lemma 3.4. Let Ω1,Ω2 ⊂ M be smooth open sets such that ∂Ω1 ∩ ∂Ω2 = ∅ and
Ω1 ∩ Ω2 is relatively compact in M . Then,

(3.11) H2
0 (Ω1) +H2

0 (Ω2) = H2
0 (Ω1 ∪ Ω2).
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Proof. We start by proving the inclusion H2
0 (Ω1) + H2

0 (Ω2) ⊂ H2
0 (Ω1 ∪ Ω2). Let

u1 ∈ H2
0 (Ω1) and u2 ∈ H2

0 (Ω2), i.e., there exists (uni )n ⊂ C∞0 (Ωi) such that uni → ui
w.r.t. the H2(Ωi) norm, i = 1, 2. Then, the sequence un1 + un2 ∈ C∞0 (Ω1 ∪Ω2) satisfies

(3.12) ‖un1 +un2−(u1+u2)‖H2
0 (Ω1∪Ω2) ≤ ‖un1−u1‖H2

0 (Ω1∪Ω2)+‖un2−u2‖H2
0 (Ω1∪Ω2)

n→∞−→ 0,

which proves the claim.
We now turn to the other inclusion. Let χ1, χ2 ∈ C∞(Ω1 ∪ Ω2) be such that

χ1 + χ2 = 1, 0 ≤ χi ≤ 1 for i = 1, 2, χ1 ≡ 1 on Ω1 \ Ω2, and χ1 ≡ 0 on Ω2 \ Ω1.
Such smooth functions exist thanks to the fact that ∂Ω1 ∩ ∂Ω2 = ∅. Moreover, since
Ω1 ∩Ω2 is relatively compact, there exists c > 0 such that |∇χi| ≤ c and |∆ωχi| ≤ c,
i = 1, 2.

Given u ∈ H2
0 (Ω1∪Ω2), let (un)n ⊂ C∞0 (Ω1∪Ω2) such that un → u in H2(Ω1∪Ω2).

Then, χiun → χiu in L2(Ωi), i = 1, 2, and

‖∇(χiun)−∇(χiu)‖L2(Ωi) ≤ ‖χi(∇un −∇u)‖L2(Ωi) + ‖|∇χi|(un − u)‖L2(Ωi)

≤ ‖∇un −∇u‖L2(Ω1∪Ω2) + c‖un − u‖L2(Ω1∪Ω2).
(3.13)

On the other hand, by Proposition 3.1 we have ‖∇(un − u)‖L2(Ω1∪Ω2) ≤ C‖un −
u‖H2

0 (Ω1∪Ω2), and hence (3.13) shows that ∇(χiun) → ∇(χiu) in L2(Ωi), i = 1, 2.

Thanks to this fact, a similar computation on ∆ω(χiun)−∆ω(χiu) yields χiun → χiu
in H2(Ωi), i = 1, 2. This proves that u = χ1u+ χ2u ∈ H2(Ω1) +H2(Ω2). �

4. Essential self-adjointness of the Heisenberg pointed sub-laplacian

In this section we focus on the pointed sub-Laplacian in the Heisenberg group. We
start by proving Theorem 1.7 via non-commutative harmonic analysis techniques. We
then conclude the section by localizing this result in Theorem 4.4. That is, we show
that the self adjoint extensions of the pointed sub-Laplacian on a domain Ω ⊂ H1

coincide with those of the (standard) sub-Laplacian on the same domain.

4.1. Deficiency spaces of pointed operators. In what follows, S(R3) is the Schwartz
space on R3 and S ′(R3) the space of tempered distributions on R3. We denote by
〈T, u〉 the action of T ∈ S ′(R3) on u ∈ S(R3). Observe that, given a real symmetric
operator A on L2(R3), with S(R3) ⊂ DomA and A(S(R3)) ⊂ S(R3), its action on
T ∈ S ′(R3) is defined as

(4.1) 〈AT, u〉 = 〈T,Au〉 ∀u ∈ S(R3).

The Dirac’s delta centered at the origin, is the distribution δ0 defined as

(4.2) 〈δ0, u〉 = u(0), u ∈ S(R3).

For a multi-index α = (α1, α2, α3), we let Dα = ∂α1
x ∂

α2
y ∂

α3
z . Recall that 〈Dαδ0, u〉 =

Dαu(0) for u ∈ S(R3).
The following lemma is the adaptation to our setting of [27, Lemma 1].

Lemma 4.1. Let A be a real essentially self-adjoint operator on L2(R3), with domain
S(R3), and A0 be the restriction of A to C∞0 (R3 \ {0}). Assume, moreover, that
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rngA ⊂ S(R3). Then, a function θ ∈ L2(R3), θ 6≡ 0, belongs to the deficiency space
K−(A0) = Ker(A∗0 + i) of A0 if and only if

(4.3) (A+ i)θ =
∑
|α|≤N

cαD
αδ0,

for some N ∈ N and non-identically zero coefficients (cα)|α|≤N ⊂ C.

Proof. Let us denote by (·, ·) the scalar product on L2(R3), and recall that (f, g) =
〈f, ḡ〉 for all f, g ∈ L2(R3). By density of DomA0, we have that θ ∈ K−(A0) if and
only if for every u ∈ DomA0 we have

0 = ((A0
∗ + i)θ, u) (density of DomA0)(4.4)

= (θ, (A0 − i)u) (definition of adjoint)(4.5)

= (θ, (A− i)u) (A0u = Au if u ∈ DomA0)(4.6)

= 〈θ, (A+ i)ū〉 (u,Au ∈ S(R3), and A is real)(4.7)

= 〈(A+ i)θ, ū〉 (A is symmetric, see (4.1)).(4.8)

Since 〈Dαδ0, v〉 = 0 for all v ∈ DomA0 ⊂ S(R3) and α ∈ N3, letting u = v̄ in the
above we get that θ ∈ K−(A0) if and only if

(4.9) 〈(A+ i)θ +Dαδ0, v〉 = 0, ∀v ∈ C∞0 (R3 \ {0}), ∀α ∈ N3.

By definition of support of a distribution and the density of C∞0 (R3 \ {0}) in the
space of S(R3) functions supported away from {0}, the latter is equivalent to the fact
that the support of the distribution on the left-hand side is contained in {0}. Since the
only distributions supported at the origin are finite linear combinations of the Dirac
delta and its derivatives, in order to complete the proof it suffices to exclude the case
(A + i)θ = 0 for θ 6≡ 0. This follows since (A + i)θ = 0 in the sense of distributions
implies that the distribution Aθ belongs to L2(R3). In particular, θ ∈ DomA∗ and
thus, by essential self-adjointness of A, it holds θ ∈ K−(A) = {0}. �

4.2. Essential self-adjointness of the pointed sub-Laplacian on H1. In this
section we apply Lemma 4.1 to the sub-Laplacian on H1, via non-commutative har-
monic analysis. This is done in Section 4.2.2 and requires some preliminary work that
is presented in the next section.

4.2.1. Non-commutative harmonic analysis on H1. For a classical reference on this
topic we refer to [32], see also [3, 14] for a more recent exposition, and [8, 7] for the
definition of the Fourier transform on tempered distributions. See also the pioneering
works [21, 20].

The Schrödinger representations (Xλ)λ∈R\{0} of H1 act on u ∈ L2(R) by

(4.10) Xλ
(x,y,z)u(ξ) := eiλ(z−yξ+xy

2
)u(ξ − x), ξ ∈ R, (x, y, z) ∈ H1.

By Stone-Von Neumann Theorem, the dual space Ĥ1 of H1 (i.e., the space of equiva-
lence classes of irreducible representations of H1) is the disjoint union of the Schrödinger
representations and of the Pontryiagin dual of R2. The non-commutative Fourier
transform defines an isometry between L2(H1) and L2(Ĥ1). The latter is the space

of operator-valued functions which associate to a representation π ∈ Ĥ1 (actually,



12 R. ADAMI, U. BOSCAIN, V. FRANCESCHI, AND D. PRANDI

to an equivalence class) an Hilbert-Schmidt operator on its representation space Hπ,
endowed with the Plancherel measure dµ̂.

Since it turns out that the measure dµ̂ is supported only on Schrödinger represen-
tations acting on L2(R), henceforth, with abuse of notation, we let Ĥ1 ' R \ {0}.
Under this identification, the non-commutative Fourier transform of a sufficiently
regular function (say, f ∈ L1(H1) ∩ L2(H1)) is the operator-valued map

(4.11) f̂λ =

∫
H1

f(p)Xλ
p−1 dp, λ ∈ R \ {0}.

In particular, the above defines an Hilbert-Schmidt operator on L2(R) for any λ 6= 0.
Explicitly computing the Plancherel measure dµ̂ yields

(4.12) ‖f‖2
L2(H1) =

∫
R
‖f̂λ‖2

HS(L2(R))

|λ|
4π
dλ, f ∈ L1(H1) ∩ L2(H1).

It is then standard to extend the above to f ∈ L2(H1).

Remark 4.2. Some differences in the explicit computations of the rest of the section
with respect to [32, 8, 7] are due to a different choice of group law. Indeed, in these
papers the following law is considered

(4.13) (x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − 2(xy′ − x′y)).

One can check that (H1, ∗) ' (H1, ?) via the group isomorphism Φ(x, y, z) = (x
2
,−y

2
, z).

We now let S(H1) = S(R3) be the class of Schwarz functions on H1, which are
defined as in the Euclidean case. Direct computations show that, for f ∈ S(H1), the
action of the Fourier transform of ∆Hf on functions u ∈ L2(R) reduces to

(4.14) (̂∆Hf)
λ

u(ξ) = (∂2
ξ − λ2ξ2)f̂λu(ξ), ξ ∈ R.

For λ 6= 0, an orthonormal basis of L2(R) eigenfunctions for the rescaled harmonic
oscillator appearing above is given by the rescaled Hermite functions (Hn,λ)n∈N, which
satisfy

(4.15) − ∆̂λ
HHn,λ = (2n+ 1)|λ|Hn,λ, n ∈ N.

These are defined by Hn,λ(ξ) = |λ|1/4Hn(|λ|1/2ξ), where (Hn)n∈N are the standard
Hermite functions. Motivated by these facts, we define

(4.16) f̃λ(n,m) = (f̂λHm,λ | Hn,λ)L2(R) =

∫
H
f(p)Xp−1(n,m, λ) dp, n,m ∈ N,

where we let p 7→ Xp(n,m, λ) = (Xλ
pHm,λ | Hn,λ)L2(R) be the coefficient of the repre-

sentation Xλ w.r.t. Hn,λ and Hm,λ.

Let H̃1 = N2 × (R \ {0}), endowed with the measure dw̃ defined by

(4.17)

∫
H̃1

θ(w̃) dw̃ =
∑
n,m∈N

∫
R
θ(n,m, λ)

|λ|
4π

dλ, w̃ = (n,m, λ).

It can be shown, cf. [8], that defining F̃(f)(n,m, λ) = f̃λ(n,m), yields an isometry

F̃ : L2(H1)→ L2(H̃1). In particular, (4.12) is recasted to

(4.18) ‖F̃(f)‖L2(H̃1) = ‖f‖L2(H1), f ∈ L2(H1).
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In [8, 7], the authours endow H̃1 with a metric, allowing them to define the Schwartz

class S(H̃1) and thus the class of tempered distributions S ′(H̃1). Similarly to what
happens for the standard Fourier transform, it can then be shown that F̃ is a contin-
uous isomorphism between the classes S(H1) and S(H̃1). This allows to extend F̃ to
tempered distributions on H1, i.e., elements of S ′(H1), via the following relation

(4.19) 〈F̃T, θ〉S′(H̃1) = 〈T, F̃∗θ〉S′(H1), θ ∈ S(H̃1), T ∈ S ′(H1).

Here 〈·, ·〉 denotes the duality, and F̃∗ is obtained by computing the above for T ∈
S(H1) ⊂ S ′(H1). Namely, this yields

(4.20) [F̃∗θ](p) =

∫
H̃1

θ(w̃)Xp−1(w̃) dw̃, p ∈ H1.

We then have the following.

Proposition 4.3. Let δ0 be the Dirac distribution on H1, centered at the origin.
Then, for any multi-index α ∈ N3, and λ 6= 0 we have

(4.21) δ̃λ0 = Id and [̃Dαδ0]
λ

= |λ|(α1+α2)/2λα3Bα,

where Bα is a non-zero operator on `2(N)×`2(N), such that Bα(n,m) = 0 if |n−m| >
α1 + α2.

Proof. By (4.19), for any θ ∈ S(H̃1), we have 〈δ̃0, θ〉S′(H̃1) = F∗θ(0). Thus, in order
to prove the first part of the statement it suffices to show that

(4.22) F̃∗θ(0) =

∫
H̃1

θ(n,m, λ) δn,m d(n,m, λ),

where δn,m is the Kroenecker delta. This follows at once from (4.20) and the fact that
X0(n,m, λ) = (Hm,λ | Hn,λ) = δn,m.

We now turn to the second part of the statement. Let us remark that,〈
[̃Dαδ0], θ

〉
S′(H̃1)

= (−1)|α|
〈
δ0, D

αF̃∗θ
〉
S′(H1)

= (−1)|α|DαF̃∗θ(0)

= (−1)|α|
∫
H̃1

θ(w̃)Dα (p 7→ Xp−1(w̃)) |p=0 dw̃.

(4.23)

To prove the statement, letting B̃α(n,m, λ) = Dα(p 7→ Xp−1(n,m, λ)|p=0 we show that

B̃α(n,m, λ) = |λ|(α1+α2)/2λα3Bα for a non-zero operator Bα and that B̃α(n,m, λ) = 0
if |m− n| > α1 + α2. By (4.10) and the fact that X0(n,m, λ) = δnm, for any α3 ∈ N
we have

(4.24) B̃(0,0,α3)(n,m, λ) = (−iλ)α3X0(w̃) = (−iλ)α3δn,m, n,m ∈ N.

This proves the statement for α = (0, 0, α3) ∈ N3, for B(0,0,α3) = (−i)α3δnm.
Recall the recurrence relation for Hermite functions

(4.25) λξHm,λ(ξ) = |λ|1/2
(√

m

2
Hm−1,λ(ξ) +

√
m+ 1

2
Hm+1,λ(ξ)

)
.
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This yields that

(4.26) B̃(0,1,0)(n,m, λ) = i|λ|1/2
(√

n+ 1

2
δn+1,m +

√
n

2
δn,m+1

)
, n,m ∈ N.

By induction, it is then easy to see that

(4.27) B̃(0,α2,α3) = B̃(0,1,0) ◦ · · · ◦ B̃(0,1,0)︸ ︷︷ ︸
α2 times

◦B̃(0,0,α3).

Notice that, by (4.26), the composition of α2 copies of B̃(0,1,0) is |λ|α2/2 times a non-

zero operator for any α2 ∈ N. Moreover, since B̃(0,0,α3) is diagonal, while in B̃(0,1,0)

the only non-zero elements are the upper and lower diagonal ones, we obtain at once
that for any α2, α3 ∈ N we have B̃(0,α2,α3)(n,m, λ) = 0 if |n−m| > α2.

The proof for the case α = (α1, α2, α3) uses similar arguments and the observation
that, due to the recurrence relation for Hermite functions

(4.28) H ′m,λ(ξ) = |λ|1/2
(√

m

2
Hm−1,λ(ξ)−

√
m+ 1

2
Hm+1,λ(ξ)

)
,

we have that

�(4.29) B̃(1,0,0)(n,m, λ) = |λ|1/2
(√

n+ 1

2
δn+1,m −

√
n

2
δn,m+1

)
.

4.2.2. Proof of Theorem 1.7. Recall that H = −∆H, DomH = C∞0 (R3) is real and
essentially self-adjoint. It is easy to check that S(R3) ⊂ Dom(H̄). We then let
A be the real essentially self-adjoint operator obtained by restricting H̄ to S(R3).
Moreover, by smoothness of XH and YH it holds rngA ⊂ S(R3).

In view of the above, we apply Lemma 4.1 to A0 = −∆H, Dom(A0) = C∞0 (R3\{0}).
Assume by contradiction that there exists θ ∈ K−(A0), θ 6≡ 0. Then, there exist non-
identically zero coefficients (cα)|α|≤N ⊂ C, such that

(4.30) (−∆H + i)θ =
∑
|α|≤N

cαD
αδ0.

We apply F̃ on both sides. By (4.15) we have

(4.31) ˜[(−∆H + i)θ]
λ

(n,m) = (|λ|(2n+ 1) + i) θ̃λ(n,m).

By Proposition 4.3 this yields
(4.32)

θ̃λ(n,m) =
Qn,m(|λ|1/2)

|λ|(2n+ 1) + i
where Qn,m(λ) =

∑
|α|≤N

cα|λ|(α1+α2)/2λα3Bα(n,m).

We now claim that there exists n0,m0 ∈ N, Λ > 0, and C > 0 such that

(4.33) |θ̃λ(n0,m0)|2 ≥ C

|λ|2(2n+ 1)2 + 1
, ∀|λ| > Λ.

Indeed, it is immediate to guarantee the existence of n0,m0 ∈ N such that Qn0,m0 6≡ 0,

since otherwise θ̃λ(n,m) = 0 for all (λ, n,m) ∈ H̃1 and hence θ ≡ 0. In this caseQn0,m0
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is a non-zero polynomial in |λ|1/2 for λ > 0 (resp. λ < 0). This yields at once the
existence of C,Λ > 0 such that |Qn0,m0(λ)| ≥ C for λ > Λ, and hence the claim.

By the previous claim and (4.18) we finally obtain that

(4.34) ‖θ‖2
L2(H1) = ‖θ̃‖2

L2(H̃1)
≥
∫
|λ|>Λ

C

|λ|2(2n0 + 1)2 + 1

|λ|
4π
dλ &

∫ +∞

1

dλ

|λ|
= +∞,

which is a contradiction. This implies that K−(A0) = {0} and, since A0 is non-
negative, that A0 is essentially self-adjoint. (See, e.g., [29, Thm. X.I and Corollary])

The statement follows by observing that the essential self-adjointness of A0 implies
the essential self-adjointness of H̊, since DomA0 ⊂ Dom H̊. �

4.3. Heisenberg pointed sub-Laplacian on domains. In this section, we localize
Theorem 1.7, by proving the following result.

Theorem 4.4. Let Ω ⊂ H1 be an open set with smooth boundary. Then, for any p ∈
Ω, the set of self-adjoint extensions of H̊ = −∆H with domain Dom(H̊) = C∞0 (Ω\{p})
coincides with the one of H = −∆H with domain Dom(H) = C∞0 (Ω).

Proof. By Proposition 3.2, it suffices to prove that H2
0 (Ω) = H2

0 (Ω \ {p}). Thanks to
the invariance under left translation of ∆H we can assume p = 0. Moreover, for any
ε > 0 we let Uε ⊂ R3 to be the Euclidean ball of radius ε centered at the origin.

By Lemma 3.4, for any ε > 0 sufficiently small, we have that
(4.35)
H2

0 (Ω) = H2
0 (Uε) +H2

0 (Ω \ Uε/2) and H2
0 (Ω \ {0}) = H2

0 (Uε \ {0}) +H2
0 (Ω \ Uε/2).

Thus, we are reduced to show that H2
0 (Uε) = H2

0 (Uε \ {0}).
Since the other inclusion is obvious, let us prove that H2

0 (Uε) ⊂ H2
0 (Uε \ {0}). To

this aim, we consider u ∈ H2
0 (Uε) and a sequence (un)n ⊂ C∞0 (Uε) such that un → u

in the H2 norm. Observe that, by Theorem 1.7 and Lemma 3.4, we have

(4.36) H2
0 (H1) = H2

0 (H1 \ {0}) = H2
0 (Uε \ {0}) +H2

0 (H1 \ Uε/2).

Hence, since u ∈ H2
0 (Uε) ⊂ H2

0 (H1), (4.36) implies that there exist two sequences

(u
(1)
n )n ⊂ C∞0 (Uε \ {0}) and (u

(2)
n )n ⊂ C∞0 (H1 \ Uε/2) which converge in the H2 norm

respectively to u(1), u(2) where u(1) +u(2) = u. Thus, the sequence un−u(1)
n ⊂ C∞0 (Uε)

converges to u(2) in the H2 norm, and hence u(2) ∈ H2
0 (Uε)∩H2

0 (H1 \Uε/2) = H2
0 (Uε \

Uε/2). Here, the last equality follows by (3.10). As a consequence, we can assume

(u
(2)
n )n ⊂ C∞0 (Uε \ Uε/2). Finally, we have shown that the sequence u

(1)
n + u

(2)
n is

contained in C∞0 (Uε \ {0}), and satisfies limn(u
(1)
n + u

(2)
n ) = u. This completes the

proof. �

5. Essential self-adjointness of 3D pointed sub-Laplacians

Let M be a 3-dimensional genuine sub-Riemannian manifold, endowed with a
smooth and positive measure ω. Let p ∈ M be a regular point, and {X1, X2} be
a local orthonormal frame for the sub-Riemannian structure in U ⊂ M , p ∈ U . (See
Remark 1.3.) By (1.5), we have

(5.1) ∆ω = X2
1 +X2

2 +X0, where X0 = divω(X1)X1 + divω(X2)X2.

The purpose of this section is to prove the following.
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Theorem 5.1. The set of self-adjoint extensions of −∆ω with domain C∞0 (M \ {p})
coincides with the one with domain C∞0 (M).

We remark that, since when M is complete the sub-Laplacian is essentially self-
adjoint, the above implies Theorem 1.6.

The idea of the proof is to show that, sufficiently near p, the Sobolev space H2
0

associated with the sub-Laplacian (5.1) is equivalent to the one associated with the
Heisenberg sub-Laplacian. This will then allow to exploit the results obtained in
Theorem 4.4 locally around p. Finally, a localization argument completes the proof.

In order to go on with the above plan, we fix the following set of coordinates around
p, for which we refer to [36, Sec. 8.2]. We stress that the regularity of p is essential
for the existence of these coordinates.

Proposition 5.2. There exists a local set of coordinates in a neighborhood V around
p such that, denoting by XH and YH the Heisenberg vector fields, there exists C =
(cij) ∈ C∞(V,GL2(R)) such that C−1 ∈ C∞(V,GL2(R)) and

(5.2) X1 = c11XH + c12YH, X2 = c21XH + c22YH.

Since, without loss of generality, we can assume that these coordinates cover the
whole U , we will henceforth identify points in U with their coordinate representation
and p with the origin. In the following, for ε > 0 we let Uε be the Euclidean ball
centered at 0 of radius ε, and H2

0 (Uε) be the Sobolev space (3.5) with respect to the
sub-Laplacian ∆ω in M .

Proposition 5.3. It holds that H2
0 (Uε) = H2

0 (Uε \ {p}).

Proof. Let us consider the coordinates given by Proposition 5.2. We denote by
H2

0 (Uε,H1) and H2
0 (Uε \ {p},H1) the Sobolev spaces associated with the Heisen-

berg sub-Laplacian ∆H = X2
H + Y 2

H . In particular, by Theorem 4.4, H2
0 (Uε,H1) =

H2
0 (Uε \ {p},H1). Thus, in order to prove the statement, it suffices to show that the

H2 norm w.r.t. the sub-Laplacian ∆ω and the measure ω is equivalent to the one
w.r.t. ∆H and the Lebesgue measure.

By smoothness of ω there exists $ > 0 such that, letting dω = ω(q)dq, we have

(5.3)
1

$
≤ ω(q) ≤ $, ∀q ∈ Uε.

In particular, this implies that the L2 norms on Uε w.r.t. ω and the Lebesgue measure
are equivalent. Moreover, by Proposition 5.2, there exists smooth functions αij and
βi, i, j = 1, 2, such that

(5.4) ∆H =
2∑

i,j=1

αijXiXj +
2∑
i=1

βiXi.

Let c > 0 be such that |αij|, |βi| ≤ c on Uε for i, j = 1, 2. By (5.3) and Proposition 3.1
with Ω = U = Uε, we then have that there exists a constant C > 0 such that, for any



POINT INTERACTIONS FOR 3D SUB-LAPLACIANS 17

u ∈ C∞0 (Uε), it holds

‖∆Hu‖2
L2(Uε,H1) ≤ $

∫
Uε

|∆Hu|2 dω

≤ c$

(
2∑

i,j=1

‖XiXju‖2
L2(Uε)

+ ‖∇u‖2
L2(Uε)

)
≤ C‖u‖H2(Uε).

(5.5)

The same argument can be used to show that ‖∆ωu‖L2(Uε) . ‖u‖H2(Uε,H1), completing
the proof of the statement. �

Thanks to the above we are now in a position to complete the proof of the main
theorem.

Proof of Theorem 5.1. By Proposition 3.2, we need to show that H2
0 (M) = H2

0 (M \
{p}). Let ε > 0 sufficiently small, so that Proposition 5.3 implies that H2

0 (Uε) =
H2

0 (Uε \ {p}). By Lemma 3.4, we then have

H2
0 (M) = H2

0 (Uε) +H2
0 (M \ Uε/2)

= H2
0 (Uε \ {p}) +H2

0 (M \ Uε/2) = H2
0 (M \ {p}). �

Appendix A. Hardy constant in the Heisenberg group

In the Riemannian setting, the essential self-adjointness for n ≥ 4 follows from the
validity of local Hardy-type inequalities, with constant CH ≥ 1. Indeed, via normal
coordinates, one can show that for every u ∈ C∞0 (M \ {p}) it holds
(A.1)∫

M

|∇Ru| dω ≥ CH

∫
{δR<η}

(
1

δ2
R

− k

δR

)
u2 dω + c‖u‖L2(M), CH =

(
n− 2

2

)2

,

for some constants η > 0, k ≤ 1/η, c ∈ R, see [28]. Here, δR(q) = dR(q, p) is the
Riemannian distance from p ∈M . By Agmon type estimates, this yields at once the
essential self-adjointness for n ≥ 4 as presented in [26, 28, 17]. See [17, Remark 4.2]
for a comment on the necessity of the condition CH ≥ 1 in order to use this approach.

In this appendix, we show that Hardy-type inequalities as the above with constant
CH ≥ 1 do not hold for 3-dimensional sub-Riemannian manifolds. In particular,
the Hardy constant in the 3-dimensional Heisenberg group H1 is strictly less than 1,
see [16] for a discussion on Hardy inequalities in the (2n+ 1)-Heisenberg group.

In the following, we denote the distance from the origin in H1 as δ(p) := d(p, 0).
One can check that δ is smooth on R3 \ {x = y = 0} and satisfies

(A.2) |∇Hδ| = 1 a.e. on H1.

Here with abuse of notation |·| denotes the sub-Riemannian norm of horizontal vector
fields as defined in (3.3), where g = gH is defined in section 2. Observe that, by [23],
there exists C > 0 such that

(A.3)

∫
H1

|∇Hu|2 dp ≥ C

∫
H1

|u|2

δ2
dp, ∀u ∈ C∞0 (H1 \ {0}).
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In the sequel we prove the following fact on the sharp constant in the above, contra-
dicting the result claimed in [35].

Theorem A.1. We have

(A.4) CH = inf
u∈C∞0 (R3\{0})

∫
H1 |∇Hu|2 dp∫

H1

|u|2
δ2
dp

< 1.

Remark A.2. Numerical computations on the explicit function used in the proof of
Theorem A.1 yield CH ≤ 0.798.

Remark A.3. In [19], an inequality similar to (A.3) is investigated, where the distance
from the origin is replaced by the Koranyi norm N , defined in (2.5). In particular,
they obtain

(A.5)

∫
H1

|∇Hu|2 dp ≥
∫
H1

|u|2 |∇HN |2

N2
dp, ∀u ∈ C∞0 (H1 \ {0}).

Here, the constant is equal to 1 and is sharp. Unfortunately, since the level sets
of |∇HN |/N are not neighborhoods of the origin, this inequality cannot be paired
with the Agmon-type estimates techniques of [17, 28] in order to yield the essential
self-adjointness result.

A.1. A set of coordinates in H1. We define the diffeomorphism Φ : R+ × S1 ×
(−2π, 2π)→ H1 \ {x = y = 0} given by

(A.6) Φ(t, θ, r) =

 t sin(θ+r)−sin θ
r

t− cos(θ+r)+cos θ
r

t2 r−sin r
2r2

 .

Observe that Φ(t, θ, r) = %t ◦ Φ(1, θ, r), where %t denotes the anisotropic dilation
introduced in (2.6). Moreover, direct computations show that Φ∗L3 = t3µ(r)dt dθ dr,
where

(A.7) µ(r) =
2− 2 cos r − r sin r

r4
.

Let θ0 ∈ S1, h0 ∈ R and t ∈ [0, 2π/|λz|]. Then, the curve t 7→ Φ(t, θ0, th0) is an
arc-parametrized length-minimizing curve issuing from 0. (See, [2, Section 4.4.3].) In
particular, this implies that δ(Φ(t, θ, r)) = t, for any t > 0, θ ∈ S1 and r ∈ [−2π, 2π].

One can check that ∇Hδ = cos(θ + r)XH + sin(θ + r)YH. Then, we let (∇Hδ)
⊥ =

− sin(θ + r)XH + cos(θ + r)YH be a choice of horizontal unit vector orthogonal to
∇Hδ. By (A.2), ∇Hδ and (∇Hδ)

⊥ form an orthonormal basis of horizontal vector
fields. Straightforward computations then show that, in the coordinates given by Φ,
we have the following:

∇Hδ = ∂t +
r

t
∂r,(A.8)

(∇Hδ)
⊥ =

r

t

r − sin(r)

r sin(r) + 2 cos(r)− 2
∂θ +

r

t
w(r)∂r.(A.9)

Here, we let

(A.10) w(r) =
r

2− r cot
(
r
2

) , r ∈ (−2π, 2π).
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A.2. Preliminary computations on the Koranyi norm. Recall that the Koranyi
norm (2.5) is

(A.11) N(x, y, z) = ((x2 + y2)2 + 16z2)1/4.

In particular, we have

(A.12) N ◦ Φ(t, θ, r) =

√
2t

r
4
√
r2 − 2r sin(r)− 2 cos(r) + 2.

With a little abuse of notation we still denote by N the Korany norm in the coordi-
nates Φ. Since δ(Φ(t, ·, ·)) = t, t > 0, for any α ∈ R this yields,

(A.13)
|Nα/2|2

δ2
= 2α/2tα−2

(
4
√
r2 − 2r sin(r)− 2 cos(r) + 2

r

)α

= tα−2γα(r).

Here, γα is defined by the last equality. It is simple to check that γα(r)µ(r) is a non-
negative and bounded continuous function on [−2π, 2π], whose maximum is 1/12 at
r = 0 and whose minimum is 0 at r = ±2π. In particular, the above is integrable in
t3µ(r) dt dr for t→ +∞ only if α < −2.

Using the expression of ∇Hδ and (∇Hδ)
⊥, and the fact that they form an orthonor-

mal frame outside t = 0, we then get

(A.14) |∇HN(t, θ, r)|2 =
1− cos(r)√

r2 − 2r sin(r)− 2 cos(r) + 2

In particular, for any α ∈ R we have

|∇H(Nα/2)|2 =
α2

4

r2(1− cos r)

2 (r2 − 2r sin(r)− 2 cos(r) + 2)

|Nα/2|2

δ2

=
α2

4
tα−2γα(r)η(r).

(A.15)

Here, η is defined by the last equality, and is independent of α. Observe that, also in
this case, the integrability at infinity is true only if α < −2.

A.3. Proof of Theorem A.1. Let us fix a smooth function χ : R+ → [0, 1] such
that χ|[0,1/2] ≡ 0 and χ|[1,+∞] ≡ 1. Then, for α > −2, we let

(A.16) uα(t, θ, r) =

{
χ(t)Nα/2(1, θ, r), if t ≤ 1,

Nα/2(t, θ, r), otherwise.

By definition of χ, (A.13), and (A.15), for any α > −2 there exists (vn)n ⊂ C∞0 (H1)
such that
(A.17)

lim
n→+∞

∫
H1

|vn|2

δ2
dp =

∫
H1

|uα|2

δ2
dp, lim

n→+∞

∫
H1

|∇Hvn|2 dp =

∫
H1

|∇Huα|2 dp.

In particular,

(A.18) CH ≤ inf

{∫
H1 |∇Huα|2 dp∫

H1

u2α
δ2

: α ∈ [−3,−2]

}
.
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Let us estimate the quotient above. By (A.13), we have

(A.19)

∫
H1

|uα|2

δ2
dp ≥

∫
δ≥1

|uα|2

δ2
dp = 2π

∫ +∞

1

tα+1 dt

∫ 2π

−2π

γα(r)µ(r) dr.

Observe that the integral in t on the r.h.s. goes to +∞ as α → −2. Moreover, as
direct computations show, Nα/2|t=1 and ∂r(N

α/2)|t=1 are uniformly bounded from
above for α ∈ [−2,−3]. As a consequence, there exists a constant C > 0 such that
|∇Huα|2 ≤ C. In particular, by (A.15),
(A.20)∫

H1

|∇Huα|2 dp ≤ CL3({0 ≤ δ ≤ 1}) +
α2

4
2π

∫ +∞

1

tα+1 dt

∫ 2π

−2π

γα(r)η(r)µ(r) dr.

Taking the quotient of (A.20) and (A.19), and passing to the limit as α → −2, we
get

CH ≤
∫ 2π

−2π
γ−2(r)η(r)µ(r) dr∫ 2π

−2π
γ−2(r)µ(r) dr

.(A.21)

Here, we passed to the limit under the integral signs thanks to monotone convergence.
Simple computations show that η(0) = 1, η(±2π) = 0, and that η is monotone
decreasing in |r|. Hence, for any a > 0, it holds∫

|r|>a
γ−2(r)η(r)µ(r) dr < η(a)

∫
|r|>a

γ−2(r)µ(r) dr,(A.22) ∫
|r|≤a

γ−2(r)η(r)µ(r) dr ≤
∫
|r|≤a

γ−2(r)µ(r) dr.(A.23)

Summing up, since η(a) < 1 and
∫
|r|>a γ−2(r)µ(r) dr > 0, by (A.21) we obtain that

CH < 1. �
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