Automotive services for connected vehicles are one of the main fields of application for new-generation mobile networks as well as for the edge computing paradigm. In this paper, we investigate a system architecture that integrates the distributed vehicular network with the network edge, with the aim to optimize the vehicle travel times. We then present a queue-based system model that permits the optimization of the vehicle flows, and we show its applicability to two relevant services, namely, lane change/merge (representative of cooperative assisted driving) and navigation. Furthermore, we introduce an efficient algorithm called Bottleneck Hunting (BH), able to formulate high-quality flow policies in linear time. We assess the performance of the proposed system architecture and of BH through a comprehensive and realistic simulation framework, combining ns-3 and SUMO. The results, derived under real-world scenarios, show that our solution provides much shorter travel times than when decisions are made by individual vehicles.
An Edge-powered Approach to Assisted Driving / Malandrino, Francesco; Chiasserini, Carla Fabiana; Michele Dell'Aera, Gian. - STAMPA. - (2020). ((Intervento presentato al convegno IEEE GLOBECOM 2020 tenutosi a Taipei nel December 2020 [10.1109/GLOBECOM42002.2020.9348235].
Titolo: | An Edge-powered Approach to Assisted Driving | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Abstract: | Automotive services for connected vehicles are one of the main fields of application for new-gene...ration mobile networks as well as for the edge computing paradigm. In this paper, we investigate a system architecture that integrates the distributed vehicular network with the network edge, with the aim to optimize the vehicle travel times. We then present a queue-based system model that permits the optimization of the vehicle flows, and we show its applicability to two relevant services, namely, lane change/merge (representative of cooperative assisted driving) and navigation. Furthermore, we introduce an efficient algorithm called Bottleneck Hunting (BH), able to formulate high-quality flow policies in linear time. We assess the performance of the proposed system architecture and of BH through a comprehensive and realistic simulation framework, combining ns-3 and SUMO. The results, derived under real-world scenarios, show that our solution provides much shorter travel times than when decisions are made by individual vehicles. | |
ISBN: | 978-1-7281-8298-8 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Globecom2020_Acc.pdf | Articolo principale | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
Chiasserini-AnEdge.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2859182