The limited power requirements of new generations of base stations (BSs) make the use of renewable energy sources, solar in particular, extremely attractive for mobile network operators. Exploiting solar energy implies a reduction of the network operation cost as well as of the carbon footprint of radio access networks, but previous research works indicate that the area of the solar panels that are necessary to power a standard macro BS is large, so large to make the solar panel deployment problematic, especially within urban areas. In this paper we use a modeling approach based on Markov reward processes to investigate the possibility of combining small area solar panels with a connection to the power grid to run a macro BS. By so doing, it is possible to increase the amount of renewable energy used to run a radio access network, while also reducing the cost incurred by the network operator to power its base stations. We assume that energy is drawn from the power grid only when needed to keep the BS operational, or during the night, that corresponds to the period with lowest electricity price. This has advantages in terms of both cost and carbon footprint. We show that solar panels of the order of 1-2 kW peak, i.e., with a surface of about 5-10 m2, combined with limited capacity energy storage (of the order of 10-15 kWh, corresponding to about 3-5 car batteries), and a smart energy management policy, can lead to an effective exploitation of renewable energy.

Small Solar Panels Can Drastically Reduce the Carbon Footprint of Radio Access Networks / Couto Da Silva, A. P.; Renga, D.; Meo, M.; Ajmone Marsan, M.. - (2019), pp. 64-65. (Intervento presentato al convegno 31st International Teletraffic Congress, ITC 2019 tenutosi a Nokia Skypark, hun nel 2019) [10.1109/ITC31.2019.00017].

Small Solar Panels Can Drastically Reduce the Carbon Footprint of Radio Access Networks

Renga D.;Meo M.;Ajmone Marsan M.
2019

Abstract

The limited power requirements of new generations of base stations (BSs) make the use of renewable energy sources, solar in particular, extremely attractive for mobile network operators. Exploiting solar energy implies a reduction of the network operation cost as well as of the carbon footprint of radio access networks, but previous research works indicate that the area of the solar panels that are necessary to power a standard macro BS is large, so large to make the solar panel deployment problematic, especially within urban areas. In this paper we use a modeling approach based on Markov reward processes to investigate the possibility of combining small area solar panels with a connection to the power grid to run a macro BS. By so doing, it is possible to increase the amount of renewable energy used to run a radio access network, while also reducing the cost incurred by the network operator to power its base stations. We assume that energy is drawn from the power grid only when needed to keep the BS operational, or during the night, that corresponds to the period with lowest electricity price. This has advantages in terms of both cost and carbon footprint. We show that solar panels of the order of 1-2 kW peak, i.e., with a surface of about 5-10 m2, combined with limited capacity energy storage (of the order of 10-15 kWh, corresponding to about 3-5 car batteries), and a smart energy management policy, can lead to an effective exploitation of renewable energy.
2019
978-0-9883045-7-4
File in questo prodotto:
File Dimensione Formato  
ITC_2019(1).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 116.11 kB
Formato Adobe PDF
116.11 kB Adobe PDF Visualizza/Apri
Renga-Small.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 73.34 kB
Formato Adobe PDF
73.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2853821