This paper presents a method based on a Model Predictive Control (MPC) aiming to optimize the passenger comforts in assisted and autonomous vehicles. The controller works on the lateral and longitudinal dynamics of the car, providing front wheel steering angle and acceleration/deceleration command. The comfort is evaluated through two indexes extracted from the ISO 2631: an equivalent acceleration aeq and a Motion Sickness Dose Value (MSDV) index. The MPC weighting parameters are designed according to the values assumed by these indexes. Specifically, each weighting parameter is changed until the most satisfying comfort evaluation and the maximum vehicle performances, in terms of lateral deviation, tracking velocity and relative yaw angle, are reached. The controller is tested numerically on a simulated scenario resulting from real GPS data obtained in a highway. The method is compared with an alternative control strategy based on the combination of a PID and a Stanley control for the longitudinal and lateral dynamics, respectively. The results demonstrate the effectiveness of the approach, leading to a low percentage of passengers can experience motion sickness.
Comfort-Oriented Design of Model Predictive Control in Assisted and Autonomous Driving / Luciani, Sara; Bonfitto, Angelo; Amati, Nicola; Tonoli, Andrea. - ELETTRONICO. - 4:(2020). (Intervento presentato al convegno ASME - 22nd International Conference on Advanced Vehicle Technologies (AVT) tenutosi a Virtual nel 17-19/08/2020) [10.1115/DETC2020-22418].
Comfort-Oriented Design of Model Predictive Control in Assisted and Autonomous Driving
Luciani, Sara;Bonfitto, Angelo;Amati, Nicola;Tonoli, Andrea
2020
Abstract
This paper presents a method based on a Model Predictive Control (MPC) aiming to optimize the passenger comforts in assisted and autonomous vehicles. The controller works on the lateral and longitudinal dynamics of the car, providing front wheel steering angle and acceleration/deceleration command. The comfort is evaluated through two indexes extracted from the ISO 2631: an equivalent acceleration aeq and a Motion Sickness Dose Value (MSDV) index. The MPC weighting parameters are designed according to the values assumed by these indexes. Specifically, each weighting parameter is changed until the most satisfying comfort evaluation and the maximum vehicle performances, in terms of lateral deviation, tracking velocity and relative yaw angle, are reached. The controller is tested numerically on a simulated scenario resulting from real GPS data obtained in a highway. The method is compared with an alternative control strategy based on the combination of a PID and a Stanley control for the longitudinal and lateral dynamics, respectively. The results demonstrate the effectiveness of the approach, leading to a low percentage of passengers can experience motion sickness.File | Dimensione | Formato | |
---|---|---|---|
Comfort Oriented Design Of Model Predictive Control In Assisted And Autonomous Driving.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2851462