In the study of muscle synergies during the maintenance of single-leg stance there are several methodological issues that must be taken into account before muscle synergy extraction. In particular, it is important to distinguish between epochs of surface electromyography (sEMG) signals corresponding to "well-balanced" and "unbalanced" single-leg stance, since different motor control strategies could be used to maintain balance. The aim of this work is to present and define a robust procedure to distinguish between "well-balanced" and "unbalanced" single-leg stance to be chosen as input for the algorithm used to extract muscle synergies. Our results demonstrate that the proposed approach for the selection of sEMG epochs relative to "well-balanced" and "unbalanced" single-leg stance is robust with respect to the selection of the segmentation threshold, revealing a high consistency in the number of muscle synergies and high similarity among the weight vectors (correlation values range from 0.75 to 0.97). Moreover, differences in terms of average recruitment levels and balance control strategies were detected, suggesting a slightly different modular organization between "well-balanced" and "unbalanced" single-leg stance. In conclusion, this approach can be successfully used as a pre-processing step before muscle synergy extraction, allowing for a better assessment of motor control strategies during the single-leg stance task.

Muscle Synergy Assessment during Single-Leg Stance / Ghislieri, M; Knaflitz, M; Labanca, L; Barone, G; Bragonzoni, L; Benedetti, M G; Agostini, V. - In: IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING. - ISSN 1534-4320. - ELETTRONICO. - 28:12(2020), pp. 2914-2922. [10.1109/TNSRE.2020.3030847]

Muscle Synergy Assessment during Single-Leg Stance

Ghislieri, M;Knaflitz, M;Agostini, V
2020

Abstract

In the study of muscle synergies during the maintenance of single-leg stance there are several methodological issues that must be taken into account before muscle synergy extraction. In particular, it is important to distinguish between epochs of surface electromyography (sEMG) signals corresponding to "well-balanced" and "unbalanced" single-leg stance, since different motor control strategies could be used to maintain balance. The aim of this work is to present and define a robust procedure to distinguish between "well-balanced" and "unbalanced" single-leg stance to be chosen as input for the algorithm used to extract muscle synergies. Our results demonstrate that the proposed approach for the selection of sEMG epochs relative to "well-balanced" and "unbalanced" single-leg stance is robust with respect to the selection of the segmentation threshold, revealing a high consistency in the number of muscle synergies and high similarity among the weight vectors (correlation values range from 0.75 to 0.97). Moreover, differences in terms of average recruitment levels and balance control strategies were detected, suggesting a slightly different modular organization between "well-balanced" and "unbalanced" single-leg stance. In conclusion, this approach can be successfully used as a pre-processing step before muscle synergy extraction, allowing for a better assessment of motor control strategies during the single-leg stance task.
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 764.13 kB
Formato Adobe PDF
764.13 kB Adobe PDF Visualizza/Apri
09222277.pdf

non disponibili

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2849509