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Abstract— In the study of muscle synergies during the 

maintenance of single-leg stance there are several methodological 

issues that must be taken into account before muscle synergy 

extraction. In particular, it is important to distinguish between 

epochs of surface electromyography (sEMG) signals 

corresponding to “well-balanced” and “unbalanced” single-leg 

stance, since different motor control strategies could be used to 

maintain balance. The aim of this work is to present and define a 

robust procedure to distinguish between “well-balanced” and 

“unbalanced” single-leg stance to be chosen as input for the 

algorithm used to extract muscle synergies. Our results 

demonstrate that the proposed approach for the selection of sEMG 

epochs relative to “well-balanced” and “unbalanced” single-leg 

stance is robust with respect to the selection of the segmentation 

threshold, revealing a high consistency in the number of muscle 

synergies and high similarity among the weight vectors 

(correlation values range from 0.75 to 0.97). Moreover, differences 

in terms of average recruitment levels and balance control 

strategies were detected, suggesting a slightly different modular 

organization between “well-balanced” and “unbalanced” single-leg 

stance. In conclusion, this approach can be successfully used as a 

pre-processing step before muscle synergy extraction, allowing for 

a better assessment of motor control strategies during the single-

leg stance task. 

 
Index Terms—balance, EMG, motor control, motor modules, 

unipedal stance. 

I. INTRODUCTION 

HE study of human balance in upright stance is useful to 

test motor skills and evaluate proprioception and 

coordination, with applications to both clinics and sport. The 

postural sway can be studied in various balance tasks, such as 

single-leg stance (SLS), tandem, semi-tandem, and double-leg 

stance (DLS) [1]. Different motor control strategies and levels 

of difficulty in carrying out the task characterize these balance 

tasks. In particular, the unipedal stance or SLS requires the 

maintenance of postural stability standing on a single limb, and 

it may be challenging in subjects affected by chronic ankle 

instability (CAI) [2]–[4]. Considering a specific balance 

exercise, different conditions of visual and somatosensory 

integrations may be tested [5]. Typically, along with the eyes 
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open (EO) condition, in which the subject exploits the visual 

feedback to maintain balance, a condition with eyes closed (EC) 

is also studied to evaluate the effect of visual deprivation on 

postural balance control [6]–[8]. 

Recently, the assessment of motor control strategies during 

different motor tasks, such as postural balance or gait, has been 

studied by means of the muscle synergy theory [9]–[13]. 

According to this theory, our Central Nervous System (CNS) 

controls specific groups of muscles (muscle synergies) to 

perform the motor task, rather than control every single muscle 

involved. The main fields of application of muscle synergies are 

not only in clinics (e.g., neurorehabilitation), but also in bipedal 

robotics and sport [14]. Muscle synergies are usually extracted 

from surface electromyographic (sEMG) signals through data 

reduction algorithms. The most used algorithm to extract 

muscle synergies is Non-Negative Matrix Factorization 

(NNMF) [15], [16].  

The study of muscle synergies is facing new challenges in the 

field of postural balance analysis. In literature, the study of 

muscle synergies in upright stance is mainly focused on the 

evaluation of balance recovery after a perturbation [17]–[21]. 

In particular, it was demonstrated that muscle synergies are 

highly consistent across different balance tasks [19], [22], [23]. 

This suggests that, increasing the task complexity, there should 

be only slight modifications to the basic motor control strategies 

involved in postural balance control. However, to the best of 

our knowledge, no studies are focusing on the muscle synergies 

adopted to maintain SLS. One possible reason may be the 

difficulty to select epochs of sEMG signals when the subject 

firmly maintains unipedal stance. Indeed, it is important to 

separate sEMG epochs in which balance is properly maintained 

from those in which a slight disequilibrium occurs. Therefore, 

this work aims at defining a robust procedure to distinguish 

between epochs of sEMG signals, relative to a “well-balanced” 

(WB) and “unbalanced” (UB) SLS. These signal epochs will 

be used as separate inputs for the muscle synergy extraction 

algorithm. The comparison of EC/EO conditions will be also 

introduced for completeness. The proposed approach might 

help the interpretation of muscle synergies in the SLS task.  
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II. MATERIALS AND METHODS 

A. Sample Population 

Twenty-two healthy subjects (11 females and 11 males; age: 

24 ± 3 years; height: 175.7 ± 9.6 cm; weight: 65.9 ± 12.2 kg) 

were enrolled in the study. None of the enrolled volunteers 

reported lower limb injuries or had neurological or 

musculoskeletal disorders that could compromise the execution 

of SLS. All the subjects were right-limb dominant, according to 

the preferred lower limb to start walking. This study was 

reviewed and approved by the Ethics Committee of the Area 

Vasta Emilia Centro della Regione Emilia Romagna (CE 

AVEC 193/2019/Sper/IOR approved on October 4, 2019). All 

participants signed written informed consent for the 

experimental procedure, and all the acquisitions were 

performed in accordance with the Declaration of Helsinki. 

B. Experimental Protocol 

The volunteers were asked to perform a SLS task for 2 times, 

once with eyes open (EO) and once with eyes closed (EC), 

randomizing the order condition for each subject. More 

specifically, in each test, the subject performed a transition from 

double-leg stance (DLS) to single-leg stance (SLS), 

maintaining SLS for at least 30 seconds, and then returning 

back to DLS. The test was performed on a firm surface (force 

plate), with the subject keeping the arms straight at the sides. In 

the EC condition, the subject closed the eyes right after reaching 

the SLS balance. If the subject failed to maintain the SLS 

balance for at least 30 s and required to land on both feet during 

the task, the test was stopped and repeated a second time. Figure 

1 represents the block diagram of the experimental protocol. 

C. Data Acquisitions 

During the experimental protocol, the following signals were 

simultaneously recorded:  

 

i. sEMG signals through active probes (FREEEMG 

1000, BTS Bioengineering, Milan, Italy) 

ii. Foot-switch signal to detect the onset/offset timing 

of the SLS (FREEEMG 1000 – Footswitch Kit, BTS 

Bioengineering, Milan, Italy) 

iii. Ground reaction force by mean of a force plate 

(Dynamic Walkway P6000, BTS Bioengineering, 

Milan, Italy). 

 

The sEMG signals were acquired from 13 muscles:  

• 2 muscles of the trunk: right Longissimus Dorsii (LDR), 

and left Longissimus Dorsii (LDL) 

• 11 muscles of the dominant (right) lower limb: Gluteus 

Medius (GMD), Rectus Femoris (RF), Lateral 

Hamstring (LH), Medial Hamstring (MH), Vastus 

Medialis (VM), Vastus Lateralis (VL), Lateral 

Gastrocnemius (LGS), Peroneus Longus (PL), Peroneus 

Brevis (PB), Soleus (SOL), and Tibialis Anterior (TA).  

 

These signals were acquired at a sampling rate of 1000 Hz. 

The foot-switch sensor was placed beneath the first 

metatarsal head of the non-dominant foot (corresponding to the 

left foot, for each subject of the sample population). 

All the acquired signals were then imported into MATLAB® 

release R2019b (The MathWorks Inc., Natick, MA, USA) to be 

offline processed through custom routines. 

Figure 2 describes the acquisition system composed of the 

sEMG active probes placed over the trunk and dominant-side 

muscles, the foot-switch sensor mounted on the contralateral 

side to detect the onset/offset timing of SLS, and the force plate 

to assess body sway. 

D. Data Processing 

Before muscle synergy extraction, the acquired sEMG 

signals were pre-processed to select the time-instants relative to 

WB or UB unipedal stance (SLS), discarding DLS epochs.  

a) Segmentation of Single-Leg Stance (SLS) Epochs 

 The segmentation of the time-instants relative to WB or UB 

SLS was performed considering the signals acquired from the 

foot-switch sensor placed under the non-dominant (left) foot 

and the ground reaction force acquired through the force plate. 

The foot-switch signal was used to detect the time-instants 

when the subjects moved from DLS to SLS and vice versa. The 

 

  
 
Fig. 1. Block diagram of the experimental protocol. Participants were 

asked to perform a transition from double-leg stance (DLS) to single-leg 

stance (SLS), maintaining SLS for at least 30 seconds, and then returning 
back to DLS.  

 

Fig. 2. Acquisition system. sEMG active probes are positioned over the 

main muscles of the dominant lower limb (sustaining the single-leg 

stance) and the trunk. A foot-switch is positioned under the first 
metatarsal head of the contralateral foot (raising from floor during SLS) 

to detect the onset/offset timing of SLS. A force plate is used to assess 

body sway during SLS. 
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foot-switch signal was normalized in amplitude in the range 

[0,1]:  

• 0 corresponds to an open foot-switch (SLS: foot raised 

from the floor)  

• 1 corresponds to a closed foot-switch (DLS: foo t on the 

floor). 

The onset of the SLS task was established 5 seconds after the 

1-to-0 transition, while the offset was established 5 seconds 

before the 0-to-1 transition. In other words, we excluded from 

the analysis DLS-to-SLS and SLS-to-DLS transitions, keeping 

only the central time samples of “pure” SLS. 

The ground reaction force acquired through the force plate 

was used to distinguish WB and UB epochs during SLS. The 

ground reaction force is a tri-axial signal, where the x-axis is 

aligned to the antero-posterior (AP) direction, the y-axis is 

aligned to the down-top vertical direction, and the z-axis is 

aligned to the medio-lateral (ML) direction. Due to the high 

correlation between the planar components (AP and ML) and 

the vertical component of the ground reaction force, only AP 

and ML were considered to separate WB from UB epochs, 

neglecting the vertical component of the force [1].  

As a first step, each signal component was low-pass filtered 

through a 5th order Butterworth digital filter with a cut-off 

frequency of 10 Hz [24], [25]. Then, the resultant force (𝐹𝑟𝑒𝑠) 

was computed as described in (1): 

𝐹𝑟𝑒𝑠 =  √𝐹𝐴𝑃
2 + 𝐹𝑀𝐿

2  (1) 

where 𝐹𝐴𝑃 and 𝐹𝑀𝐿 represent the AP and ML components of the 

low-pass filtered ground-reaction force, respectively. 

Then, the Root-Mean-Square (RMS) of the resultant reaction 

force (𝐹𝑟𝑒𝑠𝑅𝑀𝑆) was computed by windowing the signal into 

1s-epochs without overlap to ensure a sufficient number of 

samples to be used as input of the muscle synergy extraction 

algorithm. The time-instants belonging to WB or UB epochs 

were detected by applying an adaptive threshold (𝑇ℎ𝑐) to the 

𝐹𝑟𝑒𝑠𝑅𝑀𝑆 signal, as described in (2): 

𝑇ℎ𝑐 =  𝑚𝑒𝑎𝑛(𝐹𝑟𝑒𝑠𝑅𝑀𝑆) + 𝑐 ∙ 𝑠𝑡𝑑(𝐹𝑟𝑒𝑠𝑅𝑀𝑆) (2) 

where 𝑐 is a multiplicative constant (of the standard deviation). 

Figure 3 shows, for a representative subject, the binary mask 

used to separate WB from UB epochs during the SLS test 

(performed with eyes closed), for 3 different c-values (c = 0.5, 

c = 1.0, c = 1.5). These values of the constant 𝑐 have been 

chosen to achieve a sufficient length of sEMG signals for 

muscle synergy extraction (for both WB and UB epochs).  

The binary Segmentation Mask (SM) was defined as it 

follows: 

• SM = 1, if 𝐹𝑟𝑒𝑠𝑅𝑀𝑆 ≤ 𝑇ℎ𝑐  (WB epochs) 

• SM = 0, if 𝐹𝑟𝑒𝑠𝑅𝑀𝑆 > 𝑇ℎ𝑐  (UB epochs). 

 

Afterwards, the sEMG signal of each muscle was segmented 

into WB and UB epochs using the above defined binary mask. 

 

b) Muscle Synergy Extraction and Sorting 

The segmented sEMG signals were high-pass filtered 

through an 8th order Butterworth digital filter with a cut-off 

frequency of 35 Hz, to remove motion artefacts, and full-wave 

rectified to obtain non-negative signals. The envelopes of the 

rectified sEMG signals were computed through a 5th order low-

pass Butterworth digital filter with a cut-off frequency of 12 Hz 

[26]. For each observed muscle, the sEMG envelopes were 

normalized in amplitude with respect to their global maximum 

to ensure equally weighted contributions of all the muscles in 

the muscle synergy extraction process [26].  

Muscle synergies were then extracted from the amplitude-

normalized sEMG envelopes by means of the Non-Negative 

Matrix Factorization (NNMF) algorithm. The NNMF is a 

widely used factorization algorithm for muscle synergy 

extraction [15], [27] and decomposes the original sEMG 

envelope matrix (𝑀(𝑡)) as the linear combination of two 

different components: the time-dependent activation 

coefficients (𝐶(𝑡)) and the time-independent weight vectors 

(𝑊) [28] as described in (3). 

𝑀(𝑡) =  ∑ 𝐶(𝑡)𝑘 ∙  𝑊𝑘 + 𝑒

𝑁

𝑘=1

  (3) 

where 𝑁 represents the number of muscle synergies needed to 

model the motor control and 𝑒 is the reconstruction error.  

The activation coefficient vector 𝐶(𝑡)𝑘 represents the time-

dependent modulation of the muscles enrolled in the k-synergy 

(temporal component of the motor control), while the weight 

vector 𝑊𝑘 describes the time-independent contribution of each 

 

Fig. 3. Example of segmentation masks used to separate “well-balanced” 

and “unbalanced” single-leg stance (SLS) for a representative subject, 
with eyes closed, considering different values of the multiplicative 

constant (c = 0.5, 1.0, and 1.5). In blue it is represented the resultant 

reaction force (𝐹𝑟𝑒𝑠) during the SLS test, in black the 𝐹𝑟𝑒𝑠𝑅𝑀𝑆,while in 

red the segmentation mask computed considering 3 different segmentation 
thresholds (Th0.5, Th1.0, Th1.5). Each segmentation mask is set to 1 in 

correspondence of “well-balanced” SLS (𝐹𝑟𝑒𝑠𝑅𝑀𝑆 ≤ 𝑇ℎ𝑐), while it is set 

to 0 in correspondence of excessive unipedal balance perturbations 

(𝐹𝑟𝑒𝑠𝑅𝑀𝑆 > 𝑇ℎ𝑐). 
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muscle to the k-synergy (spatial component of the motor 

control).  

The MATLAB® function “nnmf” was used to factorize the 

original sEMG envelope matrix, setting the routine’s inputs 

parameters as detailed in Table I. The input parameters used in 

this study were optimized in previous works focused on muscle 

synergy extraction during gait [13], [29]. To explore different 

solutions of the NNMF algorithm, the “nnmf” function was run 

several times on the same sEMG data, changing the number of 

muscle synergies (𝑁) from 1 to 8.  

The reconstruction accuracy of the original sEMG envelope 

matrix (𝑀(𝑡)) was computed for each number of muscle 

synergies (𝑁) by means of the total Variance Accounted For 

(𝑡𝑉𝐴𝐹), defined as the uncentered Pearson’s correlation 

coefficient expressed in percentage (4): 

𝑡𝑉𝐴𝐹 =  (1 −
∑ (𝑀𝑘 − 𝑀𝑘

𝑅)2𝑚
𝑘=1

∑ (𝑀𝑘)2𝑚
𝑘=1

) ∙ 100 (4) 

where 𝑚 represents the number of observed muscles, while 𝑀𝑘
𝑅 

and 𝑀𝑘 represent the reconstructed and the original sEMG 

envelopes of the k-muscle, respectively. 

The optimal number of muscle synergies (𝑁𝑜𝑝𝑡) needed to 

properly reconstruct the original sEMG matrix (𝑀(𝑡)) was 

selected by choosing the least number of muscle synergies 

ensuring 𝑡𝑉𝐴𝐹 ≥ 90% (global criterion) [30]. Moreover, 

considering the number of muscle synergies selected according 

to the above criterion, the Variance Accounted For (𝑉𝐴𝐹) was 

also computed for each of the observed muscles. If 𝑉𝐴𝐹 ≥ 75% 

for each of the 13 muscles (local criterion), it was concluded 

that no additional muscle synergies were needed to reconstruct 

the original sEMG envelopes. Otherwise (𝑉𝐴𝐹 < 75%), the 

number of muscle synergies (𝑁) was incremented until all the 

muscles achieved a  𝑉𝐴𝐹 value equal to or greater than 75% 

[16], [31]. 

To graphically represent the muscle synergies, the weight 

vectors (𝑊) were normalized in amplitude in the range [0, 1] 

with respect to their global maximum. Then, the activation 

coefficient vectors (𝐶(𝑡)) were multiplied by the correspondent 

normalized values.   

To sort the muscle synergies in the same order for each 

subject and condition, a k-means clustering algorithm was 

applied to the weight vectors (𝑊) [32]. The clustering algorithm 

was set considering 𝑁𝑜𝑝𝑡 as number of k-means clusters, 1000 

as maximum number of iterations, 15 as number of replicates, 

and cosine similarity as distance metric. The activation 

coefficients (𝐶(𝑡)) were then sorted consequently.  

E. Robustness of the Segmentation Threshold 

To assess if the selection of both WB and UB epochs of SLS 

is robust with respect to the segmentation threshold 𝑇ℎ𝑐 , we 

used the following procedure. Separately for WB and UB 

epochs, we compared the muscle synergies extracted from 

sEMG envelopes, considering 3 different values of the constant 

𝑐 defined in (2): c = 0.5, c = 1.0, and c = 1.5.  

The muscle synergies extracted using Th0.5, Th1.0, and Th1.5 

were quantitatively compared in terms of the consistency of the 

optimal number of muscle synergies (𝑁𝑜𝑝𝑡), and the similarity 

of weight vectors estimated through Pearson’s correlation 

coefficient (𝑅). 

F. “Well-balanced” and “Unbalanced” Single-Leg Stance 

To justify the necessity to distinguish between WB and UB 

epochs of SLS, the correspondent muscle synergies were 

extracted (setting c = 1.0) and compared in terms of (a) the 

optimal number of muscle synergies (𝑁𝑜𝑝𝑡), (b) the average 

recruitment level of the activation coefficient vectors (𝑅𝑒𝑐𝑟), 

and (c) the balance control strategies (𝑆). 

 

a) Optimal Number of Muscle Synergies (𝑁𝑜𝑝𝑡) 

As stated before, the optimal number of muscle synergies 

(𝑁𝑜𝑝𝑡) necessary to properly reconstruct the original sEMG 

envelopes was selected by choosing the smallest number of 

synergies which guarantees 𝑡𝑉𝐴𝐹 ≥ 90% (global criterion) 

and 𝑉𝐴𝐹 ≥ 75% (local criterion) for each of the observed 

muscles [16], [30], [31]. 

 

b) Average Recruitment Level (𝑅𝑒𝑐𝑟)  

Since in SLS balance control there are no typical 

cyclostationary processes, any direct interpretation of the 

activation coefficient vectors 𝐶(𝑡)𝑘 is difficult. Therefore, only 

the average recruitment level was considered to quantitatively 

compare muscle synergy activation coefficient vectors (𝐶(𝑡)) 

[27]. The average recruitment level of the k-synergy (𝑅𝑒𝑐𝑟𝑘) 

was computed as the average (over time) of the activation 

coefficient vector 𝐶(𝑡)𝑘. 

  

c) Balance Control Strategy (𝑆) 

Considering the task performed and the acquired muscles, 

three different balance control strategies can be identified: (i) 

ankle control, (ii) knee control, and (iii) hip/trunk control [19]. 

  

i. The ankle control strategy (𝑆𝑎𝑛𝑘𝑙𝑒) is mainly related 

to the activation of 5 muscles of the leg: PL, PB, 

TA, LGS, and SOL. 

ii. The knee control strategy (𝑆𝑘𝑛𝑒𝑒) is mainly related 

to the activation of 3 muscles of shank: VM, VL, 

and RF. 

iii. The hip/trunk control strategy (𝑆ℎ𝑖𝑝) is mainly 

related to the activation of 5 muscles of the proximal 

lower limb and the trunk: LH, MH, GMD, LDR, and 

LDL. 

 

TABLE I 

INPUT PARAMETERS OF THE MATLAB


 ROUTINE “NNMF” USED FOR MUSCLE 

SYNERGY EXTRACTION 

Parameters Values 

Algorithm multiplicative update 

Function tolerance 1e-6 

Number of replicates 50 

Number of iterations (max.) 1000 
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The balance control strategies were quantified by computing 

the average weight vector (𝑊𝑘) across those muscles that 

belong to the same balance control strategy in the k-synergy, as 

detailed in (5): 

𝑆𝑗,𝑘 =  
∑ 𝑊𝑘,𝑖

𝑚
𝑖=1

𝑚
 (5) 

where 𝑆𝑗,𝑘 represents the j-th balance control strategy (j=1: 

ankle; 2: knee; 3: hip) for the k-synergy, and 𝑚 represents the 

number of muscles enrolled in the j-th balance control strategy. 

A single balance control strategy (𝑆𝑘) was then associated to 

each muscle synergy by calculating the highest 𝑆𝑗,𝑘 among 

those computed for the same k-synergy, as detailed in (6). 

𝑆𝑘 = max (𝑆1𝑘 , 𝑆2𝑘 , 𝑆3𝑘) (6) 

where k can assume value from 1 to 3 (S1 = Sankle, S2 = Sknee, 

S3 = Ship). 

G. Eyes Open and Eyes Closed Conditions 

To assess the impact of the visual feedback in maintaining 

SLS, muscle synergies were separately extracted from the 

sEMG envelopes in correspondence of the EO and EC 

conditions and then quantitatively compared considering the 

same parameters detailed in the previous section. 

H. Statistical Analysis 

A two-way analysis of variance (ANOVA) followed by post-

hoc analysis with Bonferroni adjustment for multiple 

comparisons was performed to assess the robustness of the 

segmentation threshold. 

To assess significant changes in the optimal number of 

muscle synergies, in the average recruitment levels, and in the 

balance control strategies considering different sEMG epochs 

(WB and UB) and during different SLS conditions (EO and 

EC), firstly the hypothesis of normality of the distribution was 

tested using the Lilliefors test with a significance level (α) of 

0.05. If the normality hypothesis was rejected, the Wilcoxon 

signed-rank test (α = 0.05) was performed, otherwise a two-

tailed paired Student’s t-test was performed (α = 0.05).   

III. RESULTS 

On average, the number of WB and UB SLS epochs were 

similar (8 ± 3 WB/UB epochs), but different epoch durations 

were measured. During the EO condition, the average WB and 

UB epoch durations were equal to 70.5 s ± 9.8 s and 10.3 s ± 

2.9 s, respectively, while considering the EC condition they 

were equal to 42.8 s ± 27.3 s and 5.8 s ± 3.8 s.  

First, we present the results related to the robustness of the 

segmentation threshold. Secondly, we present the results that 

justify the separation into WB and UB epochs of SLS. Finally, 

the muscle synergies obtained considering the two different 

SLS conditions (EO and EC) are quantitatively compared, 

separately, for WB and UB epochs. 

 

a) Robustness of the Segmentation Threshold 

All the tested segmentation thresholds (Th0.5, Th1.0, and Th1.5) 

required the same number of muscle synergies (𝑁𝑜𝑝𝑡) to 

properly reconstruct the original sEMG envelopes (𝑡𝑉𝐴𝐹 ≥ 

90% and 𝑉𝐴𝐹 ≥ 75% for each muscle). More specifically, 

considering WB epochs, for every threshold 4 muscle synergies 

were needed to reconstruct the sEMG data, both in EO and EC 

conditions. The same results were obtained considering UB 

epochs. 

Moreover, results revealed high values of the Pearson’s 

correlation coefficients between each pair of thresholds. For 

WB, we found no statistically significant differences in terms 

of weight-vector correlation among the 3 thresholds (p = 0.17) 

and the 2 tested conditions (p = 0.87). For UB, we found no 

statistically significant differences among thresholds (p = 0.28), 

while a significant decrease (p = 0.01) in the weight correlation 

was detected in the EO condition with respect to the EC 

condition. 

Table II shows the Pearson’s correlation coefficients (𝑅), 

averaged on the sample population, between each pair of 

thresholds, separately for WB and UB epochs. Results suggest 

a very high similarity among the muscle synergy weight vectors 

extracted considering the 3 thresholds, both in WB and UB 

epochs.  

Considering the high similarity of the weight vectors and the 

high consistency of the optimal number of muscle synergies 

obtained from the 3 thresholds, the multiplicative constant c of 

the segmentation threshold was set equal to 1.0. 

 

b) “Well-balanced” and “Unbalanced” Single-Leg Stance 

The muscle synergies were extracted from the sEMG 

envelopes in correspondence of WB and UB epochs of SLS, to 

justify the segmentation process. 

No significant differences were found in terms of the number 

of muscle synergies between WB and UB epochs. In particular, 

considering the EO condition, 4 muscle synergies were 

necessary to reconstruct the original sEMG data with a 𝑡𝑉𝐴𝐹 

value of 93.0% ± 1.2% for WB, and 93.1% ± 1.3% for UB, 

respectively. Similar results were obtained considering the EC 

condition, where 4 muscle synergies were extracted with a 

𝑡𝑉𝐴𝐹 value of 92.6% ± 1.5% for WB, and 92.8% ± 1.3%, for 

UB, respectively. 

Figure 4 shows the muscle synergies, averaged over the 

sample population, extracted from the 2 different conditions: 

EO in Figure 4A, and EC in Figure 4B, respectively. For each 

condition, the muscle synergies extracted considering WB and 

TABLE II 

WEIGHT VECTOR CORRELATION (𝑅) AVERAGED  

ON THE SAMPLE POPULATION 

SLS epochs 

Pearson’s Correlation Coefficient (𝑅) 

(mean ± standard deviation) 

𝑇ℎ0.5 𝑣𝑠 𝑇ℎ1 𝑇ℎ0.5 𝑣𝑠 𝑇ℎ1.5 𝑇ℎ1 𝑣𝑠 𝑇ℎ1.5 

Well-balanced EO 0.91 ± 0.16 0.92 ± 0.14 0.95 ± 0.11 

 EC 0.91 ± 0.15 0.89 ± 0.17 0.97 ± 0.08 

Unbalanced EO 0.84 ± 0.19 0.75 ± 0.20 0.80 ± 0.20 

 EC 0.88 ± 0.17 0.86 ± 0.17 0.90 ± 0.18 

   Th0.5: first threshold with c=0.5; Th1.0: second threshold with c=1.0; Th1.5: third threshold with c=1.5.  

  EO: Eyes Open; EC: Eyes Closed. 
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UB epochs of SLS are compared. In particular, for each muscle 

synergy, the average recruitment level 𝑅𝑒𝑐𝑟𝑘 and weigh vector 

𝑊𝑘 are reported. 

We found a statistically significant increase in the 

recruitment levels of three out of four muscle synergies 

extracted considering UB epochs with respect to those extracted 

considering WB epochs, during both EO and EC conditions. 

The values of the average recruitment levels of each muscle 

synergy are presented in Table III, as well as the indication of 

the statistically significant changes between WB and UB 

epochs (indicated by asterisks). 

Figure 4 (A and B) shows significant changes (p < 0.05) of 

the average recruitment levels as well as the contribution of the 

observed muscles to each muscle synergy in EO and EC 

conditions. 

The first and the fourth muscle synergies can be mainly 

associated to an ankle control strategy, the second muscle 

synergy to a knee control strategy, and the third muscle synergy 

to a hip/trunk control strategy. Considering the EO condition, 

results revealed a statistically significant increase of the ankle 

(p = 0.05) control strategy recruitment in the UB epochs with 

respect to the WB ones. No statistically significant changes 

were found evaluating the knee and hip/trunk balance control 

strategy associated to the third muscle synergy between WB 

and UB epochs. Considering the EC condition, instead, no 

statistically significant changes of the balance control strategies 

were observed between WB and UB epochs. The values of the 

average balance control strategies are presented in Table IV 

with the indication of the statistically significant changes 

between WB and UB epochs of SLS (indicated by asterisks). 

Therefore, we demonstrated that the muscle synergies 

extracted considering WB and UB epochs during SLS are 

different, both in terms of average recruitment level and balance 

control strategy. This justifies the segmentation process as a 

necessary pre-processing procedure to properly assess the 

motor control strategies and to help the interpretation of the 

muscle synergies during SLS. 

 

c) Eyes Open and Eyes Closed Conditions 

In the following, muscle synergy results between EO and EC 

conditions are compared (considering separately WB and UB 

epochs of SLS). 

As already mentioned in the previous section, both EO and 

EC conditions required the same number of muscle synergies 

(𝑁𝑜𝑝𝑡) to properly reconstruct the original sEMG envelopes (for 

both WB and UB epochs).  

Figure 5 reports the muscle synergies, averaged over the 

sample population, extracted from the WB (Figure 5A) and UB 

(Figure 5B) epochs. Considering each SLS epoch (Figure 5A or 

Figure 5B), the muscle synergies extracted during EO and EC 

conditions are directly compared.  

A statistically significant increase in the recruitment levels of 

the fourth muscle synergy (𝑅𝑒𝑐𝑟4) was found in the EC 

condition with respect to the EO condition, for both WB (p = 

0.03) and UB (p < 0.0001) epochs. No other statistically 

significant changes were found on the recruitment level of the 

remaining muscle synergies, comparing EO and EC conditions. 

The values of the average recruitment levels are presented in 

Table III with the indication of the statistically significant 

changes between EO and EC conditions (indicated by daggers). 

Considering WB epochs, we found a statistically significant 

increase of the ankle (p = 0.02) and knee (p = 0.03) control 

strategy recruitment in the EC condition with respect to the EO 

condition. No statistically significant changes were found on 

the hip/trunk balance control strategy between the EO and EC 

conditions.  

 

Fig. 4. Comparison of the muscle synergies extracted during “well-balanced” (WB) and “unbalanced” (UB) epochs of single-leg stance (SLS), for both the 

eyes open (EO) and eyes closed (EC) conditions. In both panel (A) and (B), the colored vertical bars represent the average recruitment levels 𝑅𝑒𝑐𝑟𝑘 (on the 

left) and weight vectors 𝑊𝑘 (on the right) of the k-synergy, over the sample population, with the superimposition of the standard error (black lines). The 

asterisk (*) indicates a statistically significant difference (p < 0.05).  
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Considering UB epochs, instead, no statistically significant 

changes in the balance control strategies were assessed between 

the EO and EC conditions. The values of the average balance 

control strategies are presented in Table IV with the indication 

of the statistically significant changes between EO and EC 

conditions (indicated by daggers). 

IV. DISCUSSION AND CONCLUSIONS 

The muscle synergy hypothesis is a well-known approach 

used in literature to assess the modular organization of the 

central nervous system during different motor tasks, such as 

single-leg stance. In the last years, the study of muscle 

synergies during SLS was mainly focused on the evaluation of 

balance recovery after a perturbation [17]–[21], rather than on 

the maintenance of the balance condition itself. The 

methodology proposed in this paper can be used to assess the 

motor control strategies adopted to maintain SLS, 

distinguishing between epochs of sEMG signals relative to a 

“well-balanced” (WB) and “unbalanced” (UB) SLS. 

The consistency of the optimal number of muscle synergies 

and the high similarity of the weight vectors across different 

values of the adaptive segmentation threshold suggest that the 

proposed approach is robust (the weight vector correlation 

coefficient R ranges from 0.75 to 0.97). The 4 muscle synergies 

extracted from WB and UB sEMG epochs are in line with 

previous studies [19], [27], in which similar muscle synergies 

were needed to accurately assess the balance control strategies 

during SLS after the application of multidirectional 

perturbations.  However, a fewer number of muscle synergies 

was computed in this contribution with respect to the previous 

ones due to the reduced complexity of the balance task 

analyzed. 

By considering the number and the composition of the 

muscle synergies during WB- and UB-SLS, no statistically 

significant differences were detected. However, differences in 

terms of average recruitment levels and balance control 

strategies suggest a slightly different modular organization 

TABLE III 

RECRUITMENT LEVELS (𝑅𝑒𝑐𝑟) AVERAGED  

ON THE SAMPLE POPULATION 

Recruitment Levels 

Average Recruitment Levels (𝑹𝒆𝒄𝒓) 

(mean ± standard deviation) 

Well-balanced 

(WB) 

Unbalanced 

(UB) 

EO 𝑅𝑒𝑐𝑟1 0.20 ± 0.06* 0.24 ± 0.05* 

 𝑅𝑒𝑐𝑟2 0.19 ± 0.05** 0.24 ± 0.05** 

 𝑅𝑒𝑐𝑟3 0.22 ± 0.06 0.24 ± 0.06 

 𝑅𝑒𝑐𝑟4 0.15 ± 0.04*† 0.17 ± 0.05*‡ 

EC 𝑅𝑒𝑐𝑟1 0.17 ± 0.05*** 0.25 ± 0.05*** 

 𝑅𝑒𝑐𝑟2 0.19 ± 0.07 0.22 ± 0.06 

 𝑅𝑒𝑐𝑟3 0.19 ± 0.06* 0.22 ± 0.07* 

 𝑅𝑒𝑐𝑟4 0.19 ± 0.05***† 0.23 ± 0.05***‡ 

    𝑅𝑒𝑐𝑟k represents the average recruitment level of the k-synergy (k = 1,2,3,4). The asterisk (*)  indicates 

a statistically significant difference (p < 0.05) between well-balanced (WB) and unbalanced (UB) epochs 

of single-leg stance (SLS), while the dagger (†) between eyes open (EO) and eyes closed (EC) conditions. 

Single, double, and triple asterisks (or daggers) represent p-values lower than 0.05, 0.01, and 0.001, 

respectively.  

 

 

TABLE IV 

BALANCE CONTROL STRATEGIES (𝑆) AVERAGED  

ON THE SAMPLE POPULATION 

Balance Control 

Strategies 

Average Balance Control Strategies (𝑆) 

(mean ± standard deviation) 

Well-balanced 

(WB) 

Unbalanced  

(UB) 

EO Ankle 0.37 ± 0.11*† 0.43 ± 0.11* 

 Knee 0.63 ± 0.24† 0.73 ± 0.22 

 Hip/Trunk 0.51 ± 0.14 0.56 ± 0.16 

EC Ankle 0.43 ± 0.12† 0.40 ± 0.12 

 Knee 0.76 ± 0.20† 0.79 ± 0.24 

 Hip/Trunk 0.50 ± 0.20 0.49 ± 0.08 

Average balance controls of each of the three identified strategies. The asterisk (*)  indicates a statistically 

significant difference (p < 0.05) between well-balanced (WB) and unbalanced (UB) epochs of single-leg 

stance (SLS), while the dagger (†) between eyes open (EO) and eyes closed (EC) conditions. Single, 

double, and triple asterisks (or daggers) represent p-values lower than 0.05, 0.01, and 0.001, respectively. 

 

 

 

Fig. 5. Comparison of the muscle synergies extracted during eyes open (EO) and eyes closed (EC) conditions, for both “well-balanced” and “unbalanced” 

epochs of single-leg stance (SLS). In both panel (A) and (B), colored vertical bars represent the average recruitment levels 𝑅𝑒𝑐𝑟𝑘 (on the left) and weight 

vectors 𝑊𝑘 (on the right) of the k-synergy, over the sample population, with the superimposition of the standard error (black lines). The asterisk (*) indicates 

a statistically significant difference (p < 0.05). 
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between WB- and UB-SLS epochs. More specifically, UB-SLS 

epochs require higher average recruitment levels, in both EO 

and EC conditions, and an increased ankle control strategy, in 

the EO condition. These differences justify the necessity to 

distinguish between WB and UB unipedal-stance epochs of 

sEMG signal, when feeding the algorithm for muscle synergy 

extraction. Our results are consistent with the findings of 

previous studies in which the effect of the task complexity, 

postural configuration, and loading conditions on motor control 

strategies were assessed [19], [22], [23]. Results suggest that, 

for a specific balance task, our central nervous system recruits 

similar muscle synergies rather than generating completely new 

set of muscle synergies for each task condition. Indeed, we 

found only slight modifications to the basic motor control 

strategies involved in SLS, while differences in terms of 

average recruitment levels and balance control strategies were 

assessed between EO and EC conditions. More specifically, the 

EC condition requires a higher average recruitment level of the 

fourth muscle synergy (considering both WB- and UB-SLS 

epochs), and an increased level of ankle and knee control 

strategies (considering WB-SLS epochs), suggesting a higher 

recruitment of the muscle synergies controlling the distal 

muscles.  

This study was conducted on young healthy subjects that are 

able to maintain equilibrium on one foot, even with their eyes 

closed, for at least 30 s. However, it may be difficult to apply 

this same protocol to elderly or pathological populations 

affected by severe balance impairments. The finding that the 

muscle synergies are, overall, similar between WB and UB 

epochs, can depend on the specific population considered. 

Different results might be obtained in populations with 

diminished equilibrium skills.  

Another limitation of this study is that it focused only on 

balance strategies during SLS maintenance, without analyzing 

transition tasks. The analyzed signals started 5 seconds after the 

first (DLS-to-SLS) transition, and stopped 5 seconds before the 

second (SLS-to-DLS) transition. Therefore, our findings on 

motor control strategies adopted during SLS (excluding the 

transitions) cannot be extended to task transitions. Future 

studies might analyze this important aspect [33]. 

In conclusion, our results demonstrate that the proposed 

approach for the selection of sEMG epochs relative to “well-

balanced” and “unbalanced” SLS is robust with respect to the 

selection of the segmentation threshold and can be successfully 

used as a pre-processing step before muscle synergy extraction, 

allowing a better assessment of motor control strategies during 

the maintenance of the single-leg stance. Further studies will 

focus on the application of this approach to sEMG signals 

acquired from subjects affected by chronic ankle instability 

(CAI) during SLS task, to assess its applicability in pathological 

conditions. 
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