The pervasive monitoring of HVAC systems through Building Energy Management Systems (BEMSs) is enabling the full exploitation of data-driven based methodologies for performing advanced energy management strategies. In this context, the implementation of Automated Fault Detection and Diagnosis (AFDD) based on collected operational data of Air Handling Units (AHUs) proved to be particularly effective to prevent anomalous running modes which can lead to significant energy waste over time and discomfort conditions in the built environment. The present work proposes a novel methodology for performing AFDD, based on both unsupervised and supervised data-driven methods tailored according to the operation of an AHU during transient and non-transient periods. The whole process is developed and tested on a sample of real data gathered from monitoring campaigns on two identical AHUs in the framework of the Research Project ASHRAE RP-1312. During the start-up period of operation, the methodology exploits Temporal Association Rules Mining (TARM) algorithm for an early detection of faults, while during non-transient period a number of classification models are developed for the identification of the deviation from the normal operation. The proposed methodology, conceived for quasi real-time implementation, proved to be capable of robustly and promptly identifying the presence of typical faults in AHUs.

Enhancing operational performance of AHUs through an advanced fault detection and diagnosis process based on temporal association and decision rules / Piscitelli, M. S.; Mazzarelli, D. M.; Capozzoli, A.. - In: ENERGY AND BUILDINGS. - ISSN 0378-7788. - STAMPA. - 226:(2020), p. 110369. [10.1016/j.enbuild.2020.110369]

Enhancing operational performance of AHUs through an advanced fault detection and diagnosis process based on temporal association and decision rules

Piscitelli M. S.;Capozzoli A.
2020

Abstract

The pervasive monitoring of HVAC systems through Building Energy Management Systems (BEMSs) is enabling the full exploitation of data-driven based methodologies for performing advanced energy management strategies. In this context, the implementation of Automated Fault Detection and Diagnosis (AFDD) based on collected operational data of Air Handling Units (AHUs) proved to be particularly effective to prevent anomalous running modes which can lead to significant energy waste over time and discomfort conditions in the built environment. The present work proposes a novel methodology for performing AFDD, based on both unsupervised and supervised data-driven methods tailored according to the operation of an AHU during transient and non-transient periods. The whole process is developed and tested on a sample of real data gathered from monitoring campaigns on two identical AHUs in the framework of the Research Project ASHRAE RP-1312. During the start-up period of operation, the methodology exploits Temporal Association Rules Mining (TARM) algorithm for an early detection of faults, while during non-transient period a number of classification models are developed for the identification of the deviation from the normal operation. The proposed methodology, conceived for quasi real-time implementation, proved to be capable of robustly and promptly identifying the presence of typical faults in AHUs.
File in questo prodotto:
File Dimensione Formato  
Manuscript_final_without changes marked (post print).pdf

Open Access dal 05/08/2022

Descrizione: Manuscript accepted
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri
1-s2.0-S0378778819334619-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2842789