We propose an efficient technique for performing data-driven optimal control of discrete-time systems. In particular, we show that log-sum-exp ($lse$) neural networks, which are smooth and convex universal approximators of convex functions, can be efficiently used to approximate Q-factors arising from finite-horizon optimal control problems with continuous state space. The key advantage of these networks over classical approximation techniques is that they are convex and hence readily amenable to efficient optimization.
Efficient model-free Q-factor approximation in value space via log-sum-exp neural networks / Calafiore, GIUSEPPE CARLO; Possieri, Corrado. - ELETTRONICO. - (2020). (Intervento presentato al convegno European Control Conference (ECC2020) tenutosi a Saint Petersburg, Russia nel 12-15 May, 2020) [10.23919/ECC51009.2020.9143765].
Efficient model-free Q-factor approximation in value space via log-sum-exp neural networks
Giuseppe Calafiore;Corrado Possieri
2020
Abstract
We propose an efficient technique for performing data-driven optimal control of discrete-time systems. In particular, we show that log-sum-exp ($lse$) neural networks, which are smooth and convex universal approximators of convex functions, can be efficiently used to approximate Q-factors arising from finite-horizon optimal control problems with continuous state space. The key advantage of these networks over classical approximation techniques is that they are convex and hence readily amenable to efficient optimization.File | Dimensione | Formato | |
---|---|---|---|
reinLSE_final.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
239.36 kB
Formato
Adobe PDF
|
239.36 kB | Adobe PDF | Visualizza/Apri |
Calafiore-Efficient.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
272.44 kB
Formato
Adobe PDF
|
272.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2837797