Recently, convolutional neural networks (CNNs) have been successfully applied to many remote sensing problems. However, deep learning techniques for multi-image super-resolution (SR) from multitemporal unregistered imagery have received little attention so far. This article proposes a novel CNN-based technique that exploits both spatial and temporal correlations to combine multiple images. This novel framework integrates the spatial registration task directly inside the CNN, and allows one to exploit the representation learning capabilities of the network to enhance registration accuracy. The entire SR process relies on a single CNN with three main stages: shared 2-D convolutions to extract high-dimensional features from the input images; a subnetwork proposing registration filters derived from the high-dimensional feature representations; 3-D convolutions for slow fusion of the features from multiple images. The whole network can be trained end-to-end to recover a single high-resolution image from multiple unregistered low-resolution images. The method presented in this article is the winner of the PROBA-V SR challenge issued by the European Space Agency (ESA).
DeepSUM: Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images / Bordone Molini, A.; Valsesia, D.; Fracastoro, G.; Magli, E.. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - 58:5(2020), pp. 3644-3656.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | DeepSUM: Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/TGRS.2019.2959248 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
main_R1.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Valsesia-DeepSUM.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2823752