The proliferation of IoT devices and the growing deployment of 5G networks combine to provide the perfect ecosystem for advanced smart city use cases. In this paper, we address the possibility of detecting and quantifying flows of people on city streets thanks to deployment of commercial sensors, connected to the 5G network, that capture WiFi probes transmitted by people's smartphones. We first outline the motivation and challenges of such a scenario. Then, we illustrate our approach and present results derived from live measurements in a testbed deployed in the city of Turin within the 5G-EVE project. We show that we can quite accurately estimate transit flows by simply collecting anonymized MAC addresses and timestamps from smartphones of passers-by.
IoT-based Mobility Tracking for Smart City Applications / Gebru, Kalkidan; Casetti, CLAUDIO ETTORE; Chiasserini, Carla Fabiana; Giaccone, Paolo. - STAMPA. - (2020), pp. 326-330. (Intervento presentato al convegno EuCNC 2020 tenutosi a Dubrovnik (Croatia) nel June 2020) [10.1109/EuCNC48522.2020.9200941].
IoT-based Mobility Tracking for Smart City Applications
Kalkidan Gebru;Claudio Casetti;Carla Fabiana Chiasserini;Paolo Giaccone
2020
Abstract
The proliferation of IoT devices and the growing deployment of 5G networks combine to provide the perfect ecosystem for advanced smart city use cases. In this paper, we address the possibility of detecting and quantifying flows of people on city streets thanks to deployment of commercial sensors, connected to the 5G network, that capture WiFi probes transmitted by people's smartphones. We first outline the motivation and challenges of such a scenario. Then, we illustrate our approach and present results derived from live measurements in a testbed deployed in the city of Turin within the 5G-EVE project. We show that we can quite accurately estimate transit flows by simply collecting anonymized MAC addresses and timestamps from smartphones of passers-by.File | Dimensione | Formato | |
---|---|---|---|
1570629639.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
EuCNC_2020.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
221.19 kB
Formato
Adobe PDF
|
221.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2815294