Neuromuscular impairment requires adherence to a rehabilitation regimen for maximum recovery of motor function. Consumer-grade game controllers have emerged as a viable means to relay supervised physical therapy to patients’ homes, thereby increasing their accessibility to healthcare. These controllers allow patients to perform exercise frequently and improve their rehabilitation outcomes. However, the non-universal design of game controllers targets healthy people and does not always accommodate people with disability. Consequently, many patients experience considerable difficulty assuming certain hand postures and performing the prescribed exercise correctly. Here, we explore the feasibility of improving rehabilitation outcomes through a 3D printing approach that enhances off-the-shelf game controllers in home therapy. Specifically, a custom attachment was 3D printed for a commercial haptic device that mediates fine motor rehabilitation. In an experimental study, 25 healthy subjects performed a navigation task, with the retrofit attachment and without it, while simulating disability of the upper limb. When using the attachment, subjects extended their wrist range of motion, yet maintained their level of compensation. The subjects also showed higher motivation to repeat the exercise with the enhanced device. The results bring forward evidence for the potential of this approach in transforming game controllers toward targeted interventions in home therapy.

A 3D printing approach toward targeted intervention in telerehabilitation / Barak Ventura, Roni; Rizzo, Alessandro; Nov, Oded; Porfiri, Maurizio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 10:(2020). [10.1038/s41598-020-59927-y]

A 3D printing approach toward targeted intervention in telerehabilitation

Alessandro Rizzo;
2020

Abstract

Neuromuscular impairment requires adherence to a rehabilitation regimen for maximum recovery of motor function. Consumer-grade game controllers have emerged as a viable means to relay supervised physical therapy to patients’ homes, thereby increasing their accessibility to healthcare. These controllers allow patients to perform exercise frequently and improve their rehabilitation outcomes. However, the non-universal design of game controllers targets healthy people and does not always accommodate people with disability. Consequently, many patients experience considerable difficulty assuming certain hand postures and performing the prescribed exercise correctly. Here, we explore the feasibility of improving rehabilitation outcomes through a 3D printing approach that enhances off-the-shelf game controllers in home therapy. Specifically, a custom attachment was 3D printed for a commercial haptic device that mediates fine motor rehabilitation. In an experimental study, 25 healthy subjects performed a navigation task, with the retrofit attachment and without it, while simulating disability of the upper limb. When using the attachment, subjects extended their wrist range of motion, yet maintained their level of compensation. The subjects also showed higher motivation to repeat the exercise with the enhanced device. The results bring forward evidence for the potential of this approach in transforming game controllers toward targeted interventions in home therapy.
File in questo prodotto:
File Dimensione Formato  
2020_SciRep_Telerehab.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2808934