The objective of the current work is the development of a numerical framework for the simulation of damage in composite structures using explicit time integration. The progressive damage is described using a Continuum Damage Mechanics (CDM) based material model, CODAM2, in which the damage initiation and progression are modelled using Hashin’s failure criteria and crack-band theory, respectively. The structural modelling uses higher-order theories based on the Carrera Unified Formulation (CUF). The current work considers 2D-CUF models where Lagrange polynomials are used to represent the displacement field through the thickness of each ply, resulting in a layer-wise element model. Numerical assessments are performed on coupon-level specimens, and the results are shown to be in good agreement with reference numerical predictions and experimental data, thus verifying the current implementation for progressive tensile damage. The capability of the proposed framework in increasing the polynomial expansion order through the ply thickness, and its influence on the global behaviour of the structure in the damaged state, is demonstrated. The advantages of using higher-order structural models in achieving significant improvements in computational efficiency are highlighted.
Progressive damage analysis of composite structures using higher-order layer-wise elements / Nagaraj, M. H.; Reiner, J.; Vaziri, R.; Carrera, E.; Petrolo, M.. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - STAMPA. - 190:(2020). [10.1016/j.compositesb.2020.107921]
Progressive damage analysis of composite structures using higher-order layer-wise elements
M. H. Nagaraj;E. Carrera;M. Petrolo
2020
Abstract
The objective of the current work is the development of a numerical framework for the simulation of damage in composite structures using explicit time integration. The progressive damage is described using a Continuum Damage Mechanics (CDM) based material model, CODAM2, in which the damage initiation and progression are modelled using Hashin’s failure criteria and crack-band theory, respectively. The structural modelling uses higher-order theories based on the Carrera Unified Formulation (CUF). The current work considers 2D-CUF models where Lagrange polynomials are used to represent the displacement field through the thickness of each ply, resulting in a layer-wise element model. Numerical assessments are performed on coupon-level specimens, and the results are shown to be in good agreement with reference numerical predictions and experimental data, thus verifying the current implementation for progressive tensile damage. The capability of the proposed framework in increasing the polynomial expansion order through the ply thickness, and its influence on the global behaviour of the structure in the damaged state, is demonstrated. The advantages of using higher-order structural models in achieving significant improvements in computational efficiency are highlighted.| File | Dimensione | Formato | |
|---|---|---|---|
| NRVCP_COMPB_2019.pdf accesso aperto 
											Descrizione: Pre-print
										 
											Tipologia:
											1. Preprint / submitted version [pre- review]
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										13.73 MB
									 
										Formato
										Adobe PDF
									 | 13.73 MB | Adobe PDF | Visualizza/Apri | 
| NRVCP_COMPB_2019_revised.pdf Open Access dal 01/03/2022 
											Descrizione: Post-print
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										14.7 MB
									 
										Formato
										Adobe PDF
									 | 14.7 MB | Adobe PDF | Visualizza/Apri | 
| NRVCP_COMPB_2020.pdf accesso riservato 
											Descrizione: Online version
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.88 MB
									 
										Formato
										Adobe PDF
									 | 1.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2801132
			
		
	
	
	
			      	