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Abstract

The objective of the current work is the development of a numerical framework for the simulation of damage

in composite structures using explicit time integration. The progressive damage is described using a Continuum

Damage Mechanics (CDM) based material model, CODAM2, in which the damage initiation and progression

are modelled using Hashin’s failure criteria and crack-band theory, respectively. The structural modelling uses

higher-order theories based on the Carrera Unified Formulation (CUF). The current work considers 2D-CUF

models where Lagrange polynomials are used to represent the displacement field through the thickness of each ply,

resulting in a layer-wise element model. Numerical assessments are performed on coupon-level specimens, and

the results are shown to be in good agreement with reference numerical predictions and experimental data, thus

verifying the current implementation for progressive tensile damage. The capability of the proposed framework

in increasing the polynomial expansion order through the ply thickness, and its influence on the global behaviour

of the structure in the damaged state, is demonstrated. The advantages of using higher-order structural models

in achieving significant improvements in computational efficiency are highlighted.
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1 Introduction

Fibre reinforced composites have become very popular as an engineering material system in recent decades due

to their desirable properties. This is especially true in the aerospace industry due to the high specific stiffness

and strength of such materials. However, wide-spread adoption of composites has still not been achieved, due to

uncertainties regarding their non-linear behaviour. Laminated composites typically exhibit extremely complex

failure modes, and the accurate modelling of such mechanisms is a challenging task. Nevertheless, several

attempts have been made by researchers to develop damage models for composite materials [1, 2].

Computational damage models for composite structures can be generalised into two broad categories. The

first approach, based on discrete modelling, involves the explicit geometrical representation of cracks within the

structure. Such a technique results in a physically realistic description of the damage mechanisms and their

interactions, but at the expense of greatly increased computational effort. The discrete modelling approach

typically makes use of interface elements, based on cohesive zone modelling, to simulate both matrix cracks

within the ply as well as delamination between the plies [3–7]. Other discrete modelling techniques involve the

eXtended-Finite Element Method (XFEM) where enriched kinematics are used to describe the displacement

discontinuity across the crack [8, 9], and the floating node method [10, 11].

An alternative approach to discrete damage modelling is based on the concept of continuum damage mechan-

ics (CDM), where the continuity of the displacement field in the finite element mesh is maintained. In contrast

to discrete damage modelling, the individual cracks within the composite material are smeared out in CDM

approaches, and replaced with damage parameters in the constitutive relationship to describe the influence of

such cracks on the global structural behaviour. CDM techniques are popular due to their ease of implementa-

tion and relatively low computational cost. However, they generally exhibit a strong mesh dependency, which

is reduced by scaling the fracture energy using a characteristic element length, as described by the crack-band

theory [12]. Some early works on continuum damage modelling of composite laminates include the works of

Ladaveze et al. [13] and Matzenmiller et al. [14]. Some recent works based on continuum damage modelling

include the investigation of size effects in notched composites [15], impact analysis of composite plates [16],

and progressive damage analysis of composite pressure vessels [17]. A popular approach for composite damage

modelling is a combination of CDM to describe intralaminar damage within the ply, and discrete approaches

such as the cohesive zone method to model delamination. Such an approach constitutes a good compromise

between computational effort and accuracy. Some examples of the application of the combined technique are

the failure analysis of open-hole tension laminates [18], damage and delamination analysis of hybrid composite

joints [19], and impact analysis of composites [20, 21]. More recently, the phase-field approach has emerged as

a promising technique to tackle various damage mechanisms [22]. The current work considers a purely contin-

uum damage approach, where intralaminar damage within the ply is described using the COmposite DAMage

(CODAM) model. The CODAM model was originally developed as a sub-laminate based continuum damage

model [23], and applied to the simulation of braided composite tubes under axial crushing [24]. CODAM has



also been combined with an adaptive local cohesive zone method for the efficient analysis of composites under

axial crushing and transverse impact loading [25]. The second-generation damage model, termed CODAM2, is

a strain-based damage formulation at the ply level which can be applied to the macro and meso-scale [26–28].

This version is implemented as a built-in material model (MAT219) in the explicit finite element software LS-

DYNA. The latest extension of CODAM2 includes a stress-based criterion for damage initiation and a coupling

between matrix damage and delamination [29], and is the version that has been implemented in the current

work. The structural modelling is performed using higher-order structural theories based on the Carrera Uni-

fied Formulation (CUF) [30], which is a generalised framework to develop refined 1D and 2D models where the

kinematic field is enriched via the use of cross-section and thickness expansion functions, respectively. Such

an approach results in 3D-like accuracy of the solution while avoiding the computational costs associated with

standard 3D-FEA. The current work aims to extend the capabilities of CUF as a virtual testing framework.

The numerical results shown in this paper stem from the implementation of CODAM2 within an in-house FE

code based on CUF and referred to as MUL2. Among other advantages, the in-house code allows for the full

control of the structural modeling, including the complete access to all the FE arrays. To the best of our

knowledge, the literature on the combined use of damage models as CODAM2 and refined structural models

as CUF is very limited. Such scarcity augments if layer-wise models are considered. Thus, the present paper

can provide insights on damage modeling capabilities combined with structural modeling options not available

in commercial codes. Previous works in CUF include the nonlinear analysis of thin-walled structures [31, 32],

micromechanical progressive failure analysis of composites [33], and multi-scale analysis [34, 35]. This paper

is divided into the following parts - Section 2 describes the development of 2D structural theories in CUF and

Section 3 provides a brief overview of the CODAM2 intralaminar damage model. Some numerical test cases

are given in Section 4, and the results are discussed in Section 5. The conclusions of the present work are

highlighted in Section 6.

2 Structural theories and FE formulation

2.1 Carrera Unified Formulation

Consider a 3D physical structure which consists of a laminated plate, as shown in Fig. 1. The 2D-CUF model

is also schematically shown in the figure, with the in-plane geometry of the structure oriented along the x-y

plane, and the thickness described along the z-axis. The displacement field is defined in CUF as

u(x, y, z) = F0(z)u0(x, y) + F1(z)u1(x, y) + . . .+ FM (z)uN (x, y)

v(x, y, z) = F0(z)v0(x, y) + F1(z)v1(x, y) + . . .+ FM (z)vN (x, y)

w(x, y, z) = F0(z)w0(x, y) + F1(z)w1(x, y) + . . .+ FM (z)wN (x, y)

(1)
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Figure 1: Layer-wise modelling of composite laminates in CUF. This approach uses 9-node second-order quadri-
lateral (Q9) elements to model the in-plane geometry, while Lagrange polynomial expansion functions are used
for the explicit description of individual plies.

F are expansion functions of the thickness coordinate and define the structural theory adopted. Considering a

layer-wise (LW) modelling approach, the displacements can be written in a compact form as

uk(x, y, ζk) = F kτ (ζk)ukτ (x, y), τ = 0, 1, . . .M (2)

where k is the ply index of the laminated plate, the expansion function Fτ (ζk) describes the kinematics

through the thickness of ply k with the thickness domain ζk ∈ [−1, 1], and ukτ (x, y) are the generalised displace-

ments. The number of terms in the expansion function is denoted by M. The choice of the expansion, Fτ , and

the number of terms, M, determines the structural theory used in the analysis. The current work considers

Lagrange interpolation polynomials to define the expansion through the thickness. In CUF terminology, such

a choice is termed the Lagrange-Expansion (LE) class. The current work considers first-order linear expan-

sions (LE1), second-order quadratic expansions (LE2), and third-order cubic expansions (LE3). The Lagrange

polynomial of order N is given by

Fτ (ζk) =
N∏

i=0,i6=s

ζk − ζki
ζks − ζki

(3)

ζks are located at the prescribed interpolation points. ζk0 = −1 and ζkN = 1 correspond to the top and bottom

positions of the kth layer, respectively. The displacements at the layer interfaces obey the following compatibility

condition

uktop = uk+1
bottom, k = 1, Nply − 1 (4)

The use of thickness functions from the LE class results in purely displacement degrees of freedom, and

eliminates rotations. Further details on the use of Lagrange polynomials as a class of expansion function in



1D-CUF models may be found in [36], while an overview of 2D plate modelling in CUF can be found in [37].

2.2 Finite Element Formulation

The stress and strain tensors are defined in vector notation as

σ = {σxx, σyy, σzz, σxy, σxz, σyz}

ε = {εxx, εyy, εzz, εxy, εxz, εyz}
(5)

The linear strain-displacement relation is then expressed as

ε = Bu (6)

where the differential operator, B, is

B =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


The structural framework adopted in this paper can handle nonlinear geometrical relations [31], however, in the

current study, it was deemed sufficient to limit our analysis to linear geometries in order to ease the verification

of results and investigate the effect of higher-order theories on damage onset and propagation. The constitutive

relation is given by

σ = Csecε (7)

where Csec is the secant material stiffness matrix, obtained from the CODAM2 damage model as described

in Section 3. The use of the secant stiffness matrix has several advantages and disadvantages as well as numerical

peculiarities. For a detailed analysis and guidelines on the use of this matrix the reader may refer to [14, 29].

The damaged stress state is then represented by σ. The in-plane geometry is discretised with 4- or 9-node

quadrilateral finite elements (Q4 or Q9), using nodal interpolation functions Ni(x, y), leading to the following

3D form of the displacement field

u(x, y, z) = Ni(x, y)Fτ (z)uτi (8)



2.3 Explicit time integration

As commonly implemented in commercial codes for this class of problems, an explicit scheme was adopted for

the numerical solution. The semi-discrete balance of momentum is given by

Mät+∆t = f t+∆t
ext − f t+∆t

int (9)

where M is the mass matrix and fext and fint are the external and internal force vectors, respectively. The

internal force vector can be calculated via the integration of stress as shown in Table 1. The nonlinear dynamic

problem is solved explicitly using the central difference scheme, whose formulation can be found, for instance,

in [38]. The version of the central difference scheme employed in the current work approximates the velocity at

the mid-interval such that

u̇t+
1
2 ∆t =

ut+∆t − ut

∆t
(10)

where u and u̇ are the displacement and velocity vectors, respectively. Equation 10 is re-written to obtain

an expression for the displacement update

ut+∆t = ut + ∆t u̇t+
1
2 ∆t (11)

The updated displacements are used to calculate the new strain and stress states, leading to the computation

of f t+∆t
int . The updated acceleration is directly computed from Eq. 9 as

üt+∆t = M−1{f t+∆t
ext − f t+∆t

int } (12)

The mid-interval velocity for the next cycle, required for Eq. 11, is computed from the acceleration as

u̇t+
3
2 ∆t = u̇t+

1
2 ∆t + ∆t üt+∆t (13)

At the start of the solution (t = 0), the mid-interval velocity u̇
1
2 ∆t is required to solve Eq. 11. This term is

determined by the following assumption

u̇
1
2 ∆t = u̇0 +

1

2
∆t ü0 (14)

where the initial velocity, u̇0, and the initial acceleration, ü0, are based on the initial conditions of the

system. Finally, a lumped mass matrix is considered in Eq. 12, which results in computationally inexpensive

vector multiplication. The row summing technique is utilised to obtain the lumped mass matrix. The algorithm

for the central difference scheme with mid-interval velocities has been summarised in Table 1.

The critical time step for the analysis is determined by computing the highest frequency of the system,



Table 1: Algorithm for the central difference time integration scheme [38]

Initialise u0 and u̇0 (t = 0)
Compute the lumped mass matrix M

Compute initial mid-interval velocity: u̇
1
2 ∆t = u̇0 + 1

2∆t ü0

Loop over the time increments
For each i-th time step (ti = ti−1 + ∆t)*:

1. Compute new displacements: ut+∆t = ut + ∆t u̇t+
1
2 ∆t

2. Compute displacement increment: ∆u = ut+∆t − ut

3. For each integration point:
→ Compute updated strains: εt+∆t = εt + B∆u
→ Compute updated stress: σt+∆t = Csecεt+1

4. Compute internal force vector: f t+∆t
int =

∫
V
BTσt+∆t dV

5. Compute new accelerations: üt+∆t = M−1{f t+∆t
ext − f t+∆t

int }
6. Compute new mid-interval velocities: u̇t+

3
2 ∆t = u̇t+

1
2 ∆t + ∆t üt+∆t

*For the sake of clarity, subscripts are reported only here

ωmax, and using the following expression

∆tcritical =
2

ωmax
(15)

The highest frequency may be calculated via power iteration schemes as in [39].

3 CODAM2 intralaminar damage model

The current work deals with fiber-dominated tensile progressive damage via the ply-based form of the CODAM2

stress-based damage model has been considered in the current work. Damage initiation occurs when the damage

initiation function Fα ≥ 1, in the fibre (α = 1) and transverse (α = 2) direction. Damage initiation along the

longitudinal direction, i.e. fibre damage, is described by F1, which is a maximum stress criterion given by

F1 =
σ11

XT
(16)

where XT is the fibre tensile strength. Stress and strain components with the subscripts {11, 22, 12} indicate

the fields that have been rotated into the material reference system. Similarly, damage initiation along the

transverse direction, i.e. matrix damage, is described by Hashin’s quadratic failure criterion [40] as

F2 =

(
σ22

YT

)2

+

(
τ12

SL

)2

(17)

where YT and SL are the transverse tensile and in-plane shear strength, respectively. The damage progres-

sion criteria requires the equivalent strain measures εeq1 and εeq2 in the longitudinal and transverse directions

respectively, as damage drivers, and are defined as



εeq1 = |ε11| (18)

εeq2 =
√

(γ12)2 + (ε22)2 (19)

where γ12 refers to the shear strain. In this paper, however, the shear nonlinearity was not considered. The

present paper is on the correct implementation of CODAM2 considering fiber-dominated test cases. Therefore

matrix-driven effects such as nonlinear shear, through-thickness stresses, and delamination only play a minor

role. The work-conjugate equivalent stress measures are

σeq1 = σ11 (20)

σeq2 =
τ12γ12 + σ22ε22√

(γ12)2 + (ε22)2
(21)

The strains at damage initiation are given by

εiα = εeqα |Fα=1, α = 1, 2 (22)

Subsequently, the strains at damage saturation are defined as

εs1 =
2gf1
XT

and εs2 =
2gf2
T

(23)

where gfα is the fracture energy density, and T = σeq2 |F2=1 is the peak value of the equivalent transverse

stress σeq2 . The crack-band approach [12] is used to reduce mesh dependency by scaling the experimentally

determined fracture energy Gfα, using a characteristic length parameter of the element, as follows

gfα =
Gfα
l∗
, α = 1, 2 (24)

where l∗ is the characteristic element length. The current work considers l∗ = (VGP )
1
3 , where VGP is the

Gauss point volume of the given element. Such a choice for the characteristic length is consistent with other

works on CUF for progressive damage and proved to be robust in ensuring mesh independency [33]. The Gauss

point volume is the share of the element volume at each Gauss point; that is, in the case of one Gauss point, this

volume coincides with the element volume, with two Gauss points, each volume is half of the element volume. In

contrast to [27], the local form of the CODAM2 model is implemented herein, such that Eq. 24 is applicable for

both longitudinal and transverse directions. The damage parameters ωα, used to evaluate damage progression,

are defined as



ωα =

(
< εeqα − εiα >
εsα − εiα

)(
εsα
εeqα

)
, α = 1, 2 (25)

where < · > denotes the Macaulay bracket. This degradation model leads to bilinear laws as detailed in [27]

in which comparisons with other forms of degradation were carried out. Using the damage variables, the 3D

form of the secant stiffness matrix in the damaged state [29] is written as

Cdam =
1

∆



(1−R2ν23ν32)R1E1 (ν21 + ν23ν31)R1R2E1 (ν31 +R2ν21ν32)R1E1 0 0 0

(1−R1ν31ν13)R2E2 (ν32 +R1ν31ν12)R2E2 0 0 0

(1−R1R2ν21ν12)E3 0 0 0

∆R1R2G12 0 0

sym. ∆G23 0

∆G13


(26)

where ∆ = 1 − R2ν23ν32 − R1R2ν12ν21 − 2R1R2ν31ν12ν23 − R1ν31ν13 and Rα denotes the stiffness reduction

factor, given by

Rα = (1− ωα), α = 1, 2 (27)

Such formulation considers the thermodynamic consistency as detailed in [14, 28, 29]. Also, in keeping with

the formulation in [29], the out-of-plane shear moduli are not degraded as cohesive elements are usually employed

to capture the through-thickness damage (delamination). In this work, such elements were not implemented as

the focus is on test cases that involve fibre dominated damage. Since the current structural formulation can

accommodate interlaminar stress analysis [41], future studies will be carried out to account for delamination.

Finally, the stress state is computed as

σ = Cdamε (28)

4 Numerical Examples

The current section consists of a series of numerical assessments which serve as validation cases for the proposed

modelling approach. The material system used in each case is IM7/8552 carbon fibre reinforced polymer (CFRP)

with ply thickness of 0.125 mm. Its properties are given in Table 2.

4.1 Single element tests

The first set of numerical assessments consists of single element tests under uni-axial strain conditions, which

are a convenient way of verifying the implementation of the damage model, since the different failure modes



Table 2: Material properties of the IM7/8552 CFRP material system [42]

Material E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23

IM7/8552 CFRP 165.0 9.0 9.0 5.6 5.6 2.8 0.34 0.34 0.5

XT [MPa] YT [MPa] SL [MPa] Gf1 [kJ/m2] [43] Gf2 [kJ/m2] [29] ρ [Kg/m3]

2560.0 73.0 90.0 120.0 2.6 1700.0

can be independently evaluated. In each case, the in-plane geometry is modelled using a 4-node quadrilateral

element (Q4), with the ply thickness modelled using a linear Lagrange polynomial (LE1).The use of the single

element test is typical for this class of problems, and it is necessary to verify the implementation. The analysis

is performed on a Q4 element to be as close as possible to the structural modeling adopted in the referenced

papers. The first test involves a single element under longitudinal tension, which results in a fibre failure mode.

The stress-strain curve for this case is shown in Fig. 2a. Next, the single element is subjected to transverse

tension, resulting in a matrix failure mode. The stress-strain curve for this case has been plotted in Fig. 2b.

The final assessment is the tensile loading of a single element consisting of a quasi-isotropic laminate with a

[90/45/0/ − 45]2s layup. For this case, the predicted stress-strain curve is shown in Fig. 3. The results are

compared to the CODAM2 reference model [27], implemented as a user-defined subroutine in LS-DYNA.

(a) Longitudinal loading (fibre) (b) Transverse loading (matrix)

Figure 2: Stress-strain curve of a single element loaded in tension under uni-axial strain conditions. (a) Element
loaded in the longitudinal (fibre) direction, and (b) Element loaded in the transverse (matrix dominated)
direction

The following observations are made

1. The stress-strain curves shown in Fig. 2 follow the bilinear degradation law described by the CODAM2

damage model, and the peak stresses predicted by the CUF models under longitudinal and transverse

tension are equal to the fibre and matrix material strengths, respectively, i.e., the analysis output is

consistent with the input material strength values.

2. The results of the single element laminate obtained by the present implementation is in good agreement

with reference numerical results, as shown in Fig. 3.



Figure 3: Stress-strain response of the single element [90/45/0/−45]2s IM7/8552 CFRP quasi-isotropic laminate
in tension under uniaxial strain condition

The above observations verify the implementation of the CODAM2 damage model in CUF-Explicit.

4.2 Centre-notched tension specimen

The current example concerns the analysis of a centre-notched tensile (CNT) specimen. The structure is shown

schematically in Fig. 4, and the ply stacking sequence is [45/90/ − 45/0]4s. The coupon is constrained at one

end, and a displacement uy is applied to the opposite end. Various scales of the coupon have been numerically

analysed, in order to demonstrate the capability of the current framework in predicting size-effects in composite

structures. The various scales used, and their dimensions, are listed in Table 3. The current example is based

on the works of [27], which provides reference numerical results based on the LS-DYNA implementation of the

CODAM2 model. In addition, reference numerical results are also obtained from the ABQ DLR model, which

is a Ladavèze-based damage model, implemented as a user-material (VUMAT) in ABAQUS/Explicit [27]. The

peak strengths predicted in the current work have also been compared with experimentally obtained data [44].

The mesh used in the CUF-Explicit analyses (scales 1-16) consist of 132 quadratic (see Fig. 5, second-order,

Q9) elements within the plane, while the scale-24 analysis consists of a 244 Q9 mesh. In each case, the element

distribution was kept the same with the size of the element edges scaling as the dimensions of the specimen.

The mesh-size in the fracture process zone is approximately 4 mm × 0.5 mm for the case of the scale-8 mesh.

All the CUF models use a linear (first-order, LE1) Lagrange polynomial expansion to explicitly model each

ply. In the case of the scale-8 specimen, three models are considered, where the plies are modelled using a

linear (first-order, LE1), quadratic (second-order, LE2) and cubic (third-order, LE3) expansion, respectively, as

described in Section 2.1. Also, various Q9 meshes were used by refining in the vicinity of the crack tip.

Figure 6 shows the stress-strain curve for the scale-8 CNT specimen, as obtained from the various modelling



Figure 4: Schematic representation of the centre-notched tensile specimen geometry and applied boundary
conditions

Figure 5: FE mesh with 132 Q9 elements

Table 3: Dimensions of the various scales of the CNT specimen

Scale Notch Length C [mm] Specimen Width [mm] Specimen Length [mm]

1 3.2 15.9 63.5
2 6.4 31.8 127.0
4 12.7 63.5 254.0
8 25.4 127.0 508.0
16 50.8 254.0 508.0
24* 76.2 381.0 1016.0

* Virtual test sample



approaches and meshes. The bold horizontal lines indicate the minimum and maximum strength values obtained

in experiments. The peak stress (strength) for the various scales have been plotted in Fig. 7. Comparisons

have been made with experimental and reference numerical results in both cases. The experimental results were

retrieved from [44] in which error bars are available. The influence of the structural dimensions on the overall

computational cost of the analysis has been investigated, in terms of the degrees of freedom (DOF) required, as

shown in Fig. 8a, and normalised computational time, as shown in Fig. 8b. The computational times have been

normalised for each model type using the computational time required for the analysis of the scale-1 specimen.
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Figure 6: Stress-strain curve for the scale-8 centre-notched tension specimen with [45/90/−45/0]4s layup. The
horizontal bold lines indicate minimum and maximum strength values obtained in experiments

Figure 7: Comparison of the peak strength obtained by various numerical approaches and experimental mea-
surements for the centre-notched tensile specimens with [45/90/−45/0]4s layup. The influence of specimen size
on the peak strength of the specimen is clearly observed.

Based on the results, the following comments can be made

1. From Fig. 6, a brittle behaviour of the specimen can be observed, with a linear elastic increase of the stress

until the maximum value is reached, followed by abrupt loss of stiffness leading to failure. The response



(a) Degrees of Freedom (b) Normalised Computational Time

Figure 8: Degrees of freedom and normalised computational time required for the numerical analysis of the
various CNT scales in CUF-Explicit and LS-DYNA

predicted by the current approach is in good agreement with reference numerical and experimental results.

2. The influence of the ply thickness expansion order, in the case of CUF models, can be seen in Fig. 6. The

use of LE1 expansions through the ply results in a lower peak strength compared to LE2, while there is

no difference between LE2 and LE3 expansions. The use of LE1 leads to lower accuracies even if finer

meshes are used. Such a result is consistent with previous works of the authors on static analyses [30].

3. A clear size-effect can be observed in Fig. 7, based on the peak strengths, through the scales of the CNT

specimen. The predictions of the current framework are in good agreement with reference numerical and

experimental results.

4. The scale-24 analysis (for a fictitious large scale structure where no experimental results are available) is

performed using a coarser mesh density in LS-DYNA, resulting in a reduction of the computational effort.

The CUF model requires a finer mesh compared to the other scales, but nevertheless maintains significant

computational efficiency compared to LS-DYNA.

4.3 Over-height compact tension test of dispersed-ply laminate

The last numerical assessment considers an over-height compact tension (OCT) specimen with a dispersed ply

sequence of [90/45/0/− 45]4s, resulting in a quasi-isotropic laminate. The OCT loading geometry results in a

stable crack growth, while the use of a dispersed ply sequence makes the laminate less prone to delamination.

A schematic representation of the OCT with dimensions and applied boundary conditions is given in Fig. 9. A

gradually increasing displacement u (up to 1.0 mm) is prescribed on each pin in opposite directions, leading to

a pin opening displacement (POD) of 2u. The CUF-Explicit analysis uses a mesh consisting of 392 quadratic

(Q9) elements within the plane, see Fig. 10, and three models are considered with linear (LE1), quadratic



(LE2) and cubic (LE3) ply thickness expansions, respectively. Reference numerical results are obtained from

[27], while experimental data is available in [45].

Figure 9: Schematic representation of the over-height compact tensile specimen with a [90/45/0/− 45]4s quasi-
isotropic dispersed ply sequence along with loading conditions (dimensions in mm)

The predicted and measured load-displacement response of the laminate are overlaid in Fig. 11. The

evolution of the crack length as a function of the POD has been plotted in Fig. 12. The crack length is

determined by considering the extent of fibre damage saturation in the 0◦ ply of the laminate, where damage

is considered to be saturated when the fibre damage parameter, defined in Eq. 25, reaches a value of unity

(ω1 = 1.0). The contour plot of fibre and matrix damage in the 0◦ and 90◦ plies, respectively, is shown in Fig.

13, for a POD of 1.5 mm.

The following observations are made

1. From Fig. 11, it is seen that the peak force obtained with the LE1 model matches that reported by the

reference LS-DYNA solution, while the LE3 model predicts a slightly higher peak force. The post-peak

softening curve in both cases is in good general agreement with the experimental curve. The overshoot of

the initiation of damage by LE models as compared to experimental results may be due to the absence of

delamination modelling in the simulation framework adopted in this paper. In a recent work [41], the same

structural modelling was used for delamination problems with a far better correlation with experimental

results. LE1 has kinematic features quite similar to those of the other two numerical models from the

literature, and this leads to a closer match.



Figure 10: Mesh adopted for the over-height compact tensile specimen with 392 Q9 elements

2. The differences between the LS-DYNA and the CUF-Explicit solutions, in the linear regime, stems from

the structural theories used in the models. The LS-DYNA model is developed using stacked thick shell

elements, while the CUF-Explicit model uses a combination of quadratic (Q9) elements within the plane

and Lagrange polynomial expansions of varying order through the thickness for each ply of the laminate.

3. A non-negligible amount of numerical oscillations can be observed in the softening curve of the CUF-

Explicit models. This stems from the use of a fully-integrated second-order (Q9) in-plane mesh, and the

absence of numerical damping.

4. The crack length evolution shown in Fig. 12 is in good agreement with experimental data, however with a

delayed damage initiation. The same delayed response is also observed in the force-displacement curve in

Fig. 11. The numerical models exhibit smooth curves, whereas the experimental one has sudden jumps.

As suggested in [45], such a behavior can be attributed to several factors, including the heterogeneous

nature of fiber failure in the laminate, manufacturing defects, and interaction of failure mechanisms,

including splitting and delamination. The absence of many of these factors in the numerical models may

explain such differences.
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Figure 11: POD-Force curve for the OCT test of dispersed [90/45/0/− 45]4s IM7/8552 CFRP laminates
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Figure 12: Crack length evolution in the 0◦ ply for the OCT test of dispersed [90/45/0/ − 45]4s IM7/8552
CFRP laminates
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5 Discussion

The initial numerical assessments based on single element tests show the characteristics of the CODAM2 damage

model. Tensile loading under uni-axial strain conditions, along and transverse to the fibre direction, results in

a bilinear stress-strain behaviour as seen in Fig. 2. Under loading in the fibre direction, the peak stress

coincides with the fibre strength XT following which the load carrying capacity reduces linearly until the

damage saturation strain is reached. A similar bilinear behaviour holds for transverse loading where damage

occurs in the matrix, with an associated matrix fracture energy Gf2 = 2.6 kJ/m2. The peak stress under

transverse loading corresponds to the matrix strength YT . Furthermore, the area under the curves of Fig. 2a

and Fig. 2b are consistent with the input value of the fracture energy for the fibre and matrix, respectively.

The stress-strain response of the single element laminate is in good agreement with the reference CODAM2

implementation in LS-DYNA, as seen in Fig. 3. The variation between the two numerical approaches prior to

final failure is attributed to the fact that the present work does not consider in-plane shear non-linearity, while

it is present in the LS-DYNA implementation.

The use of higher-order finite elements in the continuum damage modelling of composite laminates using

explicit codes is largely unexplored in the literature, where the standard approach is to use linear solid elements

with reduced integration. Conversely, the present work uses CUF-based higher-order structural models, which

can offer several advantages in the progressive damage analysis of composites. The use of expansion functions to

enrich the through-thickness kinematics of individual plies results in an accurate resolution of interlaminar stress

fields, which are critical inputs to damage models, especially in the case of delamination [41]. The influence of

expansion order through the thickness is seen in Fig. 6, where the use of second-order LE2 functions show an

improvement in peak stress predictions over the first-order LE1 expansion, keeping the in-plane discretisation

constant. Increasing the expansion order further does not lead to any significant effects, since in-plane loading

is considered, and delamination is not taken into account. Another characteristic of CUF structural theories is

the weak dependency between the size of the structure and the mesh, which is in strong contrast to standard

FEA. This is seen in Fig. 7, where the discretisation is kept constant for scales 1-16 of the centre-notched tensile

specimen, without affecting the accuracy of the result. Such an approach results in a constant DOF value as

seen in Fig. 8a, and consequently, the computational time required also remains fairly constant, as seen in

Fig. 8b. On the other hand, an exponential increase in both DOF and computational times can be observed

for the case of standard FEA. These aspects could have significant advantages in improving the computational

efficiency during the progressive damage analysis of large-scale composite structures.

The final assessment is the simulation of progressive damage in dispersed [90/45/0/ − 45]4s over-height

compact tension (OCT) quasi-isotropic laminates, described in Section 4.3. The predictions of the current

framework are in good general agreement with reference numerical and experimental data, as seen in Fig. 11

and Fig. 12, which show the global force-displacement response and the crack-length evolution, respectively. The

LE3 model predicts a higher peak force compared to the LE1 and the reference LS-DYNA results, but exhibits



a good correlation with experimental data in the regime of progressive damage. The predictive capability of the

numerical framework can be further improved by a combination of higher-order thickness expansion functions

and physically accurate shear behaviour, i.e., considering nonlinear shear effects. A consequence of using higher-

order models is the presence of numerical oscillations. This is clearly observed in Fig. 11, where the post peak

softening curve shows an oscillatory response. These spurious oscillations can stem from the fact that fully-

integrated higher-order elements are used in the present approach, which can cause excitation of the highest

frequency components. The use of different integration schemes, for instance reduced-integration, and damping

techniques such as bulk viscosity damping, are possible strategies to mitigate such numerical oscillations, and

is an area for future investigation.

6 Conclusion

The current work presents the development of an explicit transient dynamics framework for the progressive

tensile damage analysis of composite structures. The ply-level CODAM2 intralaminar damage model, with

stress-based failure initiation criteria, has been used to describe the damage behaviour of the composite material,

while higher-order structural theories based on the Carrera Unified Formulation are used for the layer-wise

structural modelling of the composite laminate. Several validation cases have been considered for the proposed

framework, based on the IM7/8552 carbon fibre reinforced polymer material system, and the results have been

compared with experimental data as well as reference numerical predictions using LS-DYNA and ABAQUS.

The initial verification of the damage model implementation was demonstrated via a series of single ele-

ment tests. Coupon-level assessments were then performed on centre-notched tensile laminated specimens with

quasi-isotropic layup, over a range of specimen sizes. The final validation case was the over-height compact

tension test of quasi-isotropic dispersed laminates. The predictions of the proposed framework were in good gen-

eral agreement with reference numerical and experimental results. In the case of centre-notched quasi-isotropic

dispersed laminates, size-effects were predicted with reasonable accuracy. The advantages of CUF-based higher-

order structural models was discussed, in particular the savings in computational costs and the capability to

tailor structural models by increasing the order of the thickness expansion functions, according to the require-

ments of the analysis. These advantages of the proposed framework could thus potentially make it a suitable

candidate for the computationally-efficient progressive damage analysis of composite structures. The numerical

results look promising for triggering a constructive synergy in terms of computational efficiency and accuracy

between CODAM2 and CUF. In particular, the possibility of having complete freedom on the choice of the struc-

tural modeling along the thickness looks promising to unleash the modeling capabilities of CODAM2 without

prohibitive computational overheads, as in the case of solid elements.

Considering findings from previous papers [46, 47], the use of higher-order terms and LW capabilities is

expected to provide decisive advantages in terms of damage onset and propagation in problems with highly



localized stress peaks and gradients, e.g., edge effects, or with the presence of tens of layers as in standard

structural components. The use of CUF allows us to obtain the full 3D stress field by using the constitutive

relations and avoiding post-processing techniques such as the integration of the equilibrium equations. Moreover,

the use of 1D or 2D models lead to relaxations of the aspect ratio constraints that 3D models suffer from.

Future investigations include extending the present work to compressive damage, and the inclusion of cohesive

zone modelling to account for delamination. A suitable application for the resulting framework would be low-

velocity impact analysis of composite structures.
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