A computationally efficient modeling approach for the accurate evaluation of process-induced deformations and residual stresses in composite parts is presented. A family of refined one-dimensional kinematic models, developed in the framework of the Carrera Unified Formulation, has been used to predict the accurate through-thickness deformation of layered structures during the manufacturing process. The composite material curing phase has been simulated exploiting the capabilities of the software RAVEN. A cure hardening instantaneously linear elastic model has been used. A benchmark based on an L-shaped component has been selected to compare the results obtained using different computational approaches. A closed-form solution, the present refined one-dimensional models and classical solid models, have been considered. The effects of the modeling approach on the prediction of the spring-in angle and on the residual stress field have been evaluated and discussed. The results demonstrate that the use of refined kinematic models can lead to a high-fidelity description of the problem and a quasi-3D accuracy while reducing the computational cost with respect to classical FEM approaches. The through-thickness effects have been predicted with a high level of accuracy and the use of layer-wise models has led to an accurate description of the stress field, including the transverse shear stresses.
Analysis of process-induced deformations and residual stresses in curved composite parts considering transverse shear stress and thickness stretching / Zappino, E.; Zobeiry, N.; Petrolo, M.; Vaziri, R.; Carrera, E.; Poursartip, A.. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - STAMPA. - 241(2020).
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Analysis of process-induced deformations and residual stresses in curved composite parts considering transverse shear stress and thickness stretching |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.compstruct.2020.112057 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
ZZPVCP_COST_2019.pdf | Pre-print | 1. Preprint / Submitted Version | ![]() | Visibile a tuttiVisualizza/Apri |
ZZPVCP_COST_2019_rev.pdf | Post-print | 2. Post-print / Author's Accepted Manuscript | ![]() | Embargo: 21/02/2022 Richiedi una copia |
ZZPVCP_COST_2020.pdf | Online version | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2799892