Using the natural notion of Hasse–Schmidt derivations on an exterior algebra, we relate two classical and seemingly unrelated subjects. The first is the famous Cayley–Hamilton theorem of linear algebra, “each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial”, and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heisenberg algebra.
Hasse–Schmidt derivations and Cayley–Hamilton theorem for exterior algebras / Gatto, Letterio; Scherbak, Inna. - STAMPA. - 733:(2019), pp. 149-165. (Intervento presentato al convegno Voronezh Winter Mathematical School tenutosi a Voronezh nel November 13-19, 2017, (organized by Voronezh University, the Moscow Lomonosov University, and the Steklov Mathematical Institute)) [10.1090/conm/733/14739].
Hasse–Schmidt derivations and Cayley–Hamilton theorem for exterior algebras
Letterio Gatto;
2019
Abstract
Using the natural notion of Hasse–Schmidt derivations on an exterior algebra, we relate two classical and seemingly unrelated subjects. The first is the famous Cayley–Hamilton theorem of linear algebra, “each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial”, and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heisenberg algebra.File | Dimensione | Formato | |
---|---|---|---|
Gatto_Scherbak_FF.pdf
accesso aperto
Descrizione: Versione postprint dell'articolo già pubblicato sulla rivista
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
417.84 kB
Formato
Adobe PDF
|
417.84 kB | Adobe PDF | Visualizza/Apri |
2019_GSCH.pdf
accesso riservato
Descrizione: Versione editoriale dell'articolo
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
283.22 kB
Formato
Adobe PDF
|
283.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2790492