Using the natural notion of Hasse–Schmidt derivations on an exterior algebra, we relate two classical and seemingly unrelated subjects. The first is the famous Cayley–Hamilton theorem of linear algebra, “each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial”, and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heisenberg algebra.

Hasse–Schmidt derivations and Cayley–Hamilton theorem for exterior algebras / Gatto, Letterio; Scherbak, Inna. - STAMPA. - 733:(2019), pp. 149-165. (Intervento presentato al convegno Voronezh Winter Mathematical School tenutosi a Voronezh nel November 13-19, 2017, (organized by Voronezh University, the Moscow Lomonosov University, and the Steklov Mathematical Institute)) [10.1090/conm/733/14739].

Hasse–Schmidt derivations and Cayley–Hamilton theorem for exterior algebras

Letterio Gatto;
2019

Abstract

Using the natural notion of Hasse–Schmidt derivations on an exterior algebra, we relate two classical and seemingly unrelated subjects. The first is the famous Cayley–Hamilton theorem of linear algebra, “each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial”, and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heisenberg algebra.
2019
9781470437824
9781470453565
File in questo prodotto:
File Dimensione Formato  
Gatto_Scherbak_FF.pdf

accesso aperto

Descrizione: Versione postprint dell'articolo già pubblicato sulla rivista
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 417.84 kB
Formato Adobe PDF
417.84 kB Adobe PDF Visualizza/Apri
2019_GSCH.pdf

accesso riservato

Descrizione: Versione editoriale dell'articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 283.22 kB
Formato Adobe PDF
283.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2790492