Let (un)n≥0 be a nondegenerate linear recurrence of integers, and let A be the set of positive integers n such that u n and n are relatively prime. We prove that A has an asymptotic density, and that this density is positive unless (un/n)n≥1 is a linear recurrence.
On numbers n relatively prime to the nth term of a linear recurrence / Sanna, C.. - In: BULLETIN OF THE MALAYSIAN MATHEMATICAL SOCIETY. - ISSN 0126-6705. - STAMPA. - 42:2(2019), pp. 827-833. [10.1007/s40840-017-0514-8]
On numbers n relatively prime to the nth term of a linear recurrence
Sanna C.
2019
Abstract
Let (un)n≥0 be a nondegenerate linear recurrence of integers, and let A be the set of positive integers n such that u n and n are relatively prime. We prove that A has an asymptotic density, and that this density is positive unless (un/n)n≥1 is a linear recurrence.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
Open Access dal 30/09/2017
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
265.87 kB
Formato
Adobe PDF
|
265.87 kB | Adobe PDF | Visualizza/Apri |
On numbers n relatively prime to the nth term of a linear recurrence.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2790032