POLITECNICO DI TORINO

Repository ISTITUZIONALE

On numbers n relatively prime to the nth term of a linear recurrence

Original
On numbers n relatively prime to the nth term of a linear recurrence / Sanna, C.. - In: BULLETIN OF THE MALAYSIAN MATHEMATICAL SOCIETY. - ISSN 0126-6705. - STAMPA. - 42:2(2019), pp. 827-833. [10.1007/s40840-017-0514-8]

Availability:
This version is available at: 11583/2790032 since: 2020-05-03T10:10:59Z
Publisher:
Springer

Published
DOI:10.1007/s40840-017-0514-8

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

ON NUMBERS n RELATIVELY PRIME TO THE n TH TERM OF A LINEAR RECURRENCE

CARLO SANNA

Abstract

Let $\left(u_{n}\right)_{n \geq 0}$ be a nondegenerate linear recurrence of integers, and let \mathcal{A} be the set of positive integers n such that u_{n} and n are relatively prime. We prove that \mathcal{A} has an asymptotic density, and that this density is positive unless $\left(u_{n} / n\right)_{n \geq 1}$ is a linear recurrence.

1. Introduction

Let $\left(u_{n}\right)_{n \geq 0}$ be a linear recurrence over the integers, that is, $\left(u_{n}\right)_{n \geq 0}$ is a sequence of integers satisfying

$$
u_{n}=a_{1} u_{n-1}+a_{2} u_{n-2}+\cdots+a_{k} u_{n-k}
$$

for all integers $n \geq k$, where $a_{1}, \ldots, a_{k} \in \mathbf{Z}$ and $a_{k} \neq 0$. To avoid trivialities, we assume that $\left(u_{n}\right)_{n \geq 0}$ is not identically zero. We refer the reader to [4, Ch. 1-8] for the general terminology and theory of linear recurrences.

The set

$$
\mathcal{B}_{u}:=\left\{n \in \mathbf{N}: n \mid u_{n}\right\}
$$

has been studied by several researchers. Assuming that $\left(u_{n}\right)_{n \geq 0}$ is nondegenerate and that its characteristic polynomial has only simple roots, Alba González, Luca, Pomerance, and Shparlinski [1, Theorem 1.1] proved that

$$
\# \mathcal{B}_{u}(x) \ll_{k} \frac{x}{\log x},
$$

for all sufficiently large $x>1$. André-Jeannin [2] and Somer [10] studied the arithmetic properties of the elements of \mathcal{B}_{u} when $\left(u_{n}\right)_{n \geq 0}$ is a Lucas sequence, that is, $\left(u_{0}, u_{1}, k\right)=(0,1,2)$. In such a case, generalizing a previous result of Luca and Tron [6], Sanna [8] proved the upper bound

$$
\# \mathcal{B}_{u}(x) \leq x^{1-\left(\frac{1}{2}+o(1)\right) \log \log \log x / \log \log x},
$$

as $x \rightarrow+\infty$, where the $o(1)$ depends on a_{1} and a_{2}. Furthermore, Corvaja and Zannier [3] studied the more general set

$$
\mathcal{B}_{u, v}:=\left\{n \in \mathbf{N}: v_{n} \mid u_{n}\right\},
$$

where $\left(v_{n}\right)_{n \geq 0}$ is another linear recurrence over the integers. Under some mild hypotheses on $\left(u_{n}\right)_{n \geq 0}$ and $\left(v_{n}\right)_{n \geq 0}$, they proved that $\mathcal{B}_{u, v}$ has zero asymptotic density [3, Corollary 2], while Sanna [7] gave the bound

$$
\# \mathcal{B}_{u, v}(x) \ll_{u, v} x \cdot\left(\frac{\log \log x}{\log x}\right)^{h_{u, v}}
$$

for all $x \geq 3$, where $h_{u, v}$ is a positive integer depending only on $\left(u_{n}\right)_{n \geq 0}$ and $\left(v_{n}\right)_{n \geq 0}$.
If $\left(F_{n}\right)_{n \geq 0}$ is the sequence of Fibonacci numbers, Leonetti and Sanna [5] showed that the set

$$
\mathcal{G}:=\left\{\operatorname{gcd}\left(n, F_{n}\right): n \in \mathbf{N}\right\}
$$

has zero asymptotic density, and that

$$
\# \mathcal{G}(x) \gg \frac{x}{\log x},
$$

[^0]for all $x \geq 2$. Moreover, Sanna and Tron [9] proved that for each positive integer m the set
$$
\left\{n \in \mathbf{N}: \operatorname{gcd}\left(n, F_{n}\right)=m\right\}
$$
has an asymptotic density. They also gave a criterion to establish when this density is positive, and a formula for the density in terms of an infinite series involving the Möbius function and the rank of appearance.

On the other hand, the set

$$
\mathcal{A}_{u}=\left\{n \in \mathbf{N}: \operatorname{gcd}\left(n, u_{n}\right)=1\right\}
$$

does not seem to have attracted so much attention. We prove the following result:
Theorem 1.1. For any nondegenerate linear recurrence of integers $\left(u_{n}\right)_{n \geq 0}$, the asymptotic density $\mathbf{d}\left(\mathcal{A}_{u}\right)$ of \mathcal{A}_{u} exists. Moreover, if $\left(u_{n} / n\right)_{n \geq 1}$ is not a linear recurrence (of rational numbers) then $\mathbf{d}\left(\mathcal{A}_{u}\right)>0$. Otherwise, \mathcal{A}_{u} is finite and, a fortiori, $\mathbf{d}\left(\mathcal{A}_{u}\right)=0$.

We remark that given the initial conditions and the coefficients of a linear recurrence $\left(u_{n}\right)_{n \geq 0}$, it is easy to test effectively if $\left(u_{n} / n\right)_{n \geq 1}$ is a linear recurrence or not (see Lemma 2.1, in §2).

Notation. Throughout, the letter p always denotes a prime number. For a set of positive integers \mathcal{S}, we put $\mathcal{S}(x):=\mathcal{S} \cap[1, x]$ for all $x \geq 1$, and we recall that the asymptotic density $\mathbf{d}(\mathcal{S})$ of \mathcal{S} is defined as the limit of the ratio $\# \mathcal{S}(x) / x$ as $x \rightarrow+\infty$, whenever this exists. We employ the Landau-Bachmann "Big Oh" and "little oh" notations O and o, as well as the associated Vinogradov symbols \ll and \gg, with their usual meanings. Any dependence of the implied constants is explicitly stated or indicated with subscripts.

2. Preliminaries

In this section we give some definitions and collect some preliminary results needed in the later proofs. Let f_{u} be the characteristic polynomial of $\left(u_{n}\right)_{n \geq 0}$, i.e.,

$$
f_{u}(X)=X^{k}-a_{1} X^{k-1}-a_{2} X^{k-2}-\cdots-a_{k} .
$$

Moreover, let \mathbf{K} be the splitting field of f_{u} over \mathbf{Q}, and let $\alpha_{1}, \ldots, \alpha_{r} \in \mathbf{K}$ be all the distinct roots of f_{u}. It is well known that there exist $g_{1}, \ldots, g_{r} \in \mathbf{K}[X]$ such that

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{r} g_{i}(n) \alpha_{i}^{n}, \tag{1}
\end{equation*}
$$

for all integers $n \geq 0$. We define B_{u} as the smallest positive integer such that all the coefficients of the polynomials $B_{u} g_{1}, \ldots, B_{u} g_{r}$ are algebraic integers.

We have the following easy lemma.
Lemma 2.1. $\left(u_{n} / n\right)_{n \geq 1}$ is a linear recurrence (of rational numbers) if and only if

$$
\begin{equation*}
g_{1}(0)=\cdots=g_{r}(0)=0 . \tag{2}
\end{equation*}
$$

In such a case, \mathcal{A}_{u} is finite.
Proof. The first part of the lemma follows immediately from the fact that any linear recurrence can be written as a generalized power sum like (1) in a unique way (assuming the roots $\alpha_{1}, \ldots, \alpha_{r}$ are distinct, and up to the order of the addends). For the second part, if (2) holds then for all positive integer n we have that

$$
\frac{B_{u} u_{n}}{n}=\sum_{i=1}^{r} \frac{B_{u} g_{i}(n)}{n} \alpha_{i}^{n}
$$

is both a rational number and an algebraic integer, hence it is an integer. Therefore, $n \mid B_{u} u_{n}$, and so $\operatorname{gcd}\left(n, u_{n}\right)=1$ only if $n \mid B_{u}$, which in turn implies that \mathcal{A}_{u} is finite.

For the rest of this section, we assume that $\left(u_{n}\right)_{n \geq 0}$ is nondegenerate and that f_{u} has only simple roots, hence, in particular, $r=k$. We write $\bar{\Delta}_{u}$ for the discriminant of the polynomial f_{u}, and we recall that Δ_{u} is a nonzero integer. If $k \geq 2$, then for all integers x_{1}, \ldots, x_{k} we set

$$
D_{u}\left(x_{1}, \ldots, x_{k}\right):=\operatorname{det}\left(\alpha_{i}^{x_{j}}\right)_{1 \leq i, j \leq k},
$$

and for any prime number p not dividing a_{k} we define $T_{u}(p)$ as the greatest integer $T \geq 0$ such that p does not divide

$$
\prod_{1 \leq x_{2}, \ldots, x_{k} \leq T} \max \left\{1,\left|N_{\mathbf{K}}\left(D_{u}\left(0, x_{2}, \ldots, x_{k}\right)\right)\right|\right\}
$$

where $N_{\mathbf{K}}(\alpha)$ denotes the norm of $\alpha \in \mathbf{K}$ over \mathbf{Q}, and the empty product is equal to 1 . It is known that such T exists [4, p. 88]. If $k=1$, then we set $T_{u}(p):=+\infty$ for all prime numbers p not dividing a_{1}. Note that $T_{u}(p)=0$ if and only if $k=2$ and p divides Δ_{u}.

Finally, for all $\gamma \in] 0,1[$, we define

$$
\mathcal{P}_{u, \gamma}:=\left\{p: p \nmid a_{k}, T_{u}(p)<p^{\gamma}\right\} .
$$

We are ready to state two important lemmas regarding $T_{u}(p)$ [1, Lemma 2.1, Lemma 2.2].
Lemma 2.2. For all $\gamma \in] 0,1\left[\right.$ and $x \geq 2^{1 / \gamma}$ we have

$$
\# \mathcal{P}_{u, \gamma}(x) \ll_{u} \frac{x^{k \gamma}}{\gamma \log x}
$$

Lemma 2.3. Assume that p is a prime number not dividing $a_{k} B_{u} \Delta_{u}$ and relatively prime with at least one term of $\left(u_{n}\right)_{n \geq 0}$. Then, for all $x \geq 1$, the number of positive integers $m \leq x$ such that $u_{p m} \equiv 0(\bmod p)$ is

$$
O_{k}\left(\frac{x}{T_{u}(p)}+1\right)
$$

Actually, in [1] both Lemma 2.2 and Lemma 2.3 were proved only for $k \geq 2$. However, one can easily check that they are true also for $k=1$.

3. Proof of Theorem 1.1

For all integers $n \geq 0$, define

$$
v_{n}:=B_{u} \sum_{i=1}^{r} \frac{g_{i}(n)-g_{i}(0)}{n} \alpha_{i}^{n} \quad \text { and } \quad w_{n}:=B_{u} \sum_{i=1}^{r} g_{i}(0) \alpha_{i}^{n} .
$$

Note that both $\left(v_{n}\right)_{n \geq 0}$ and $\left(w_{n}\right)_{n \geq 0}$ are linear recurrences of algebraic integers, and that the characteristic polynomial of $\left(w_{n}\right)_{n \geq 0}$ has only simple roots.

Let \mathcal{G} be the Galois group of \mathbf{K} over \mathbf{Q}. Since u_{n} is an integer, for any $\sigma \in \mathcal{G}$ we have that

$$
\begin{equation*}
n v_{n}+w_{n}=B_{u} u_{n}=\sigma\left(B_{u} u_{n}\right)=\sigma\left(n v_{n}+w_{n}\right)=n \sigma\left(v_{n}\right)+\sigma\left(w_{n}\right), \tag{3}
\end{equation*}
$$

for all integers $n \geq 0$. In (3) note that both $n \sigma\left(v_{n}\right)$ and $\sigma\left(w_{n}\right)$ are linear recurrences, and the first is a multiple of n, while the characteristic polynomial of the second has only simple roots. Since the expression of a linear recurrence as a generalized power sum is unique, from (3) we get that $w_{n}=\sigma\left(w_{n}\right)$ for any $\sigma \in \mathcal{G}$, hence w_{n} is an integer.

Thanks to Lemma 2.1, we know that $\left(w_{n}\right)_{n \geq 0}$ is identically zero if and only if $\left(u_{n} / n\right)_{n \geq 1}$ is a linear recurrence, and in such a case \mathcal{A}_{u} is finite, so that the claim of Theorem 1.1 is obvious. Hence, we assume that $\left(w_{n}\right)_{n \geq 0}$ is not identically zero.

For the sake of convenience, put $\mathcal{C}_{u}:=\mathbf{N} \backslash \mathcal{A}_{u}$. Thus we have to prove that the asymptotic density of \mathcal{C}_{u} exists and is less than 1 . For each $y>0$, we split \mathcal{C}_{u} into two subsets:

$$
\begin{aligned}
& \mathcal{C}_{u, y}^{-}:=\left\{n \in \mathcal{C}_{u}: p \mid \operatorname{gcd}\left(n, u_{n}\right) \text { for some } p \leq y\right\}, \\
& \mathcal{C}_{u, y}^{+}:=\mathcal{C}_{u} \backslash \mathcal{C}_{u, y}^{-} .
\end{aligned}
$$

It is well known that $\left(u_{n}\right)_{n \geq 0}$ is definitively periodic modulo p, for any prime number p. Therefore, it is easy to see that $\mathcal{C}_{u, y}^{-}$is an union of finitely many arithmetic progressions and a
finite subset of \mathbf{N}. In particular, $\mathcal{C}_{u, y}^{-}$has an asymptotic density. If we put $\delta_{y}:=\mathbf{d}\left(\mathcal{C}_{u, y}^{-}\right)$, then it is clear that δ_{y} is a bounded nondecreasing function of y, hence the limit

$$
\begin{equation*}
\delta:=\lim _{y \rightarrow+\infty} \delta_{y} \tag{4}
\end{equation*}
$$

exists finite. We shall prove that \mathcal{C}_{u} has asymptotic density δ. Hereafter, all the implied constants may depend on $\left(u_{n}\right)_{n \geq 0}$ and k. If $n \in \mathcal{C}_{u, y}^{+}(x)$ then there exists a prime $p>y$ such that $p \mid n$ and $p \mid u_{n}$. Furthermore, $B_{u} u_{n}=n v_{n}+w_{n}$ implies that $p \mid w_{n}$. Hence, we can write $n=p m$ for some positive integer $m \leq x / p$ such that $w_{p m} \equiv 0(\bmod p)$. For sufficiently large y, we have that p does not divide $f_{w}(0) B_{w} \Delta_{w}$ (actually, $B_{w}=1$) and is coprime with at least one term of $\left(w_{s}\right)_{s \geq 0}$, since $\left(w_{s}\right)_{s \geq 0}$ is not identically zero.

Therefore, by applying Lemma 2.3 to $\left(w_{s}\right)_{s \geq 0}$, we get that the number of possible values of m is at most

$$
O\left(\frac{x}{p T_{w}(p)}+1\right)
$$

As a consequence,

$$
\begin{equation*}
\# \mathcal{C}_{u, y}^{+}(x) \ll \sum_{y<p \leq x}\left(\frac{x}{p T_{w}(p)}+1\right) \ll x \cdot\left(\sum_{p>y} \frac{1}{p T_{w}(p)}+\frac{1}{\log x}\right), \tag{5}
\end{equation*}
$$

where we also used the Chebyshev's bound for the number of primes not exceeding x. Setting $\gamma:=1 /(k+1)$, by partial summation and Lemma 2.2, we have

$$
\begin{equation*}
\sum_{\substack{p>y \\ p \in \mathcal{P}_{w, \gamma}}} \frac{1}{p T_{w}(p)} \leq \sum_{\substack{p>y \\ p \in \mathcal{P}_{w, \gamma}}} \frac{1}{p}=\left[\frac{\# \mathcal{P}_{w, \gamma}(t)}{t}\right]_{t=y}^{+\infty}+\int_{y}^{+\infty} \frac{\# \mathcal{P}_{w, \gamma}(t)}{t^{2}} \mathrm{~d} t \ll \frac{1}{y^{1-k \gamma}}=\frac{1}{y^{\gamma}} . \tag{6}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{\substack{p>y \\ p \notin \mathcal{P}_{w, \gamma}}} \frac{1}{p T_{w}(p)} \leq \sum_{\substack{p>y \\ p \notin \mathcal{P}_{w, \gamma}}} \frac{1}{p^{1+\gamma}} \ll \int_{y}^{+\infty} \frac{\mathrm{d} t}{t^{1+\gamma}} \ll \frac{1}{y^{\gamma}} \tag{7}
\end{equation*}
$$

Thus, putting together (5), (6), and (7), we obtain

$$
\frac{\# \mathcal{C}_{u, y}^{+}(x)}{x} \ll \frac{1}{y^{\gamma}}+\frac{1}{\log x},
$$

so that

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty}\left|\frac{\# \mathcal{C}_{u}(x)}{x}-\delta_{y}\right|=\limsup _{x \rightarrow+\infty}\left|\frac{\# \mathcal{C}_{u}(x)}{x}-\frac{\# \mathcal{C}_{u, y}^{-}(x)}{x}\right|=\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{C}_{u, y}^{+}(x)}{x} \ll \frac{1}{y^{\gamma}}, \tag{8}
\end{equation*}
$$

hence, by letting $y \rightarrow+\infty$ in (8) and by using (4), we get that \mathcal{C}_{u} has asymptotic density δ.
It remains only to prove that $\delta<1$. Clearly,

$$
\mathcal{C}_{u, y}^{-} \subseteq\{n \in \mathbf{N}: p \mid n \text { for some } p \leq y\}
$$

so that, by Eratosthenes' sieve and Mertens' third theorem [11, Ch. I.1, Theorem 11], we have

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{C}_{u, y}^{-}(x)}{x} \leq 1-\prod_{p \leq y}\left(1-\frac{1}{p}\right) \leq 1-\frac{c_{1}}{\log y}, \tag{9}
\end{equation*}
$$

for all $y \geq 2$, where $c_{1}>0$ is an absolute constant. Furthermore, the last part of (8) says that

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{C}_{u, y}^{+}(x)}{x} \leq \frac{c_{2}}{y^{\gamma}}, \tag{10}
\end{equation*}
$$

for all sufficiently large y, where $c_{2}>0$ is an absolute constant.
Therefore, putting together (9) and (10), we get

$$
\begin{equation*}
\delta=\lim _{x \rightarrow+\infty} \frac{\# \mathcal{C}_{u}(x)}{x} \leq \limsup _{x \rightarrow+\infty} \frac{\# \mathcal{C}_{u, y}^{-}(x)}{x}+\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{C}_{u, y}^{+}(x)}{x} \leq 1-\left(\frac{c_{1}}{\log y}-\frac{c_{2}}{y^{\gamma}}\right), \tag{11}
\end{equation*}
$$

for all sufficiently large y.
Finally, picking a sufficiently large y, depending on c_{1} and c_{2}, the bound (11) yields $\delta<1$. The proof of Theorem 1.1 is complete.

References

1. J. J. Alba González, F. Luca, C. Pomerance, and I. E. Shparlinski, On numbers n dividing the nth term of a linear recurrence, Proc. Edinb. Math. Soc. (2) 55 (2012), no. 2, 271-289.
2. R. André-Jeannin, Divisibility of generalized Fibonacci and Lucas numbers by their subscripts, Fibonacci Quart. 29 (1991), no. 4, 364-366.
3. P. Corvaja and U. Zannier, Finiteness of integral values for the ratio of two linear recurrences, Invent. Math. 149 (2002), no. 2, 431-451.
4. G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence sequences, Mathematical Surveys and Monographs, vol. 104, American Mathematical Society, Providence, RI, 2003.
5. P. Leonetti and C. Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).
6. F. Luca and E. Tron, The distribution of self-Fibonacci divisors, Advances in the theory of numbers, Fields Inst. Commun., vol. 77, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 149-158.
7. C. Sanna, Distribution of integral values for the ratio of two linear recurrences, https://arxiv.org/abs/ 1703. 10047.
8. C. Sanna, On numbers n dividing the nth term of a Lucas sequence, Int. J. Number Theory 13 (2017), no. 3, 725-734.
9. C. Sanna and E. Tron, The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number, https://arxiv.org/abs/1705.01805.
10. L. Somer, Divisibility of terms in Lucas sequences by their subscripts, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 515-525.
11. G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995.

Università degli Studi di Torino, Department of Mathematics, Turin, Italy
E-mail address: carlo.sanna.dev@gmail.com
URL: http://orcid.org/0000-0002-2111-7596

[^0]: 2010 Mathematics Subject Classification. Primary: 11B37. Secondary: 11A07, 11B39, 11N25.
 Key words and phrases. Linear recurrences; greatest common divisor; divisibility.

