For each integer b ≥ 3 and every x ≥ 1, let (Figure presented.) b,0(x) be the set of positive integers n ≤ x which are divisible by the product of their nonzero base b digits. We prove bounds of the form xρjavax.xml.bind.JAXBElement@43ace5c8+o(1) < # (Figure presented.) b,0(x) < xηjavax.xml.bind.JAXBElement@103fdc7f+o(1), as x → +∞, where ρb,0 and ηb,0 are constants in ]0, 1[ depending only on b. In particular, we show that x0.526 < # (Figure presented.) 10,0(x) < x0.787, for all sufficiently large x. This improves the bounds x0.495 < # (Figure presented.) 10,0(x) < x0.901, which were proved by De Koninck and Luca.
On numbers divisible by the product of their nonzero base b digits / Sanna, Carlo. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. - STAMPA. - 43:11(2020), pp. 1563-1571. [10.2989/16073606.2019.1637956]
On numbers divisible by the product of their nonzero base b digits
SANNA, CARLO
2020
Abstract
For each integer b ≥ 3 and every x ≥ 1, let (Figure presented.) b,0(x) be the set of positive integers n ≤ x which are divisible by the product of their nonzero base b digits. We prove bounds of the form xρjavax.xml.bind.JAXBElement@43ace5c8+o(1) < # (Figure presented.) b,0(x) < xηjavax.xml.bind.JAXBElement@103fdc7f+o(1), as x → +∞, where ρb,0 and ηb,0 are constants in ]0, 1[ depending only on b. In particular, we show that x0.526 < # (Figure presented.) 10,0(x) < x0.787, for all sufficiently large x. This improves the bounds x0.495 < # (Figure presented.) 10,0(x) < x0.901, which were proved by De Koninck and Luca.File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
Open Access dal 08/08/2020
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
279.54 kB
Formato
Adobe PDF
|
279.54 kB | Adobe PDF | Visualizza/Apri |
On numbers divisible by the product of their nonzero base b digits.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
222.23 kB
Formato
Adobe PDF
|
222.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2789376