For each integer b ≥ 3 and every x ≥ 1, let (Figure presented.) b,0(x) be the set of positive integers n ≤ x which are divisible by the product of their nonzero base b digits. We prove bounds of the form xρjavax.xml.bind.JAXBElement@43ace5c8+o(1) < # (Figure presented.) b,0(x) < xηjavax.xml.bind.JAXBElement@103fdc7f+o(1), as x → +∞, where ρb,0 and ηb,0 are constants in ]0, 1[ depending only on b. In particular, we show that x0.526 < # (Figure presented.) 10,0(x) < x0.787, for all sufficiently large x. This improves the bounds x0.495 < # (Figure presented.) 10,0(x) < x0.901, which were proved by De Koninck and Luca.

On numbers divisible by the product of their nonzero base b digits / Sanna, Carlo. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. - STAMPA. - 43:11(2020), pp. 1563-1571. [10.2989/16073606.2019.1637956]

On numbers divisible by the product of their nonzero base b digits

SANNA, CARLO
2020

Abstract

For each integer b ≥ 3 and every x ≥ 1, let (Figure presented.) b,0(x) be the set of positive integers n ≤ x which are divisible by the product of their nonzero base b digits. We prove bounds of the form xρjavax.xml.bind.JAXBElement@43ace5c8+o(1) < # (Figure presented.) b,0(x) < xηjavax.xml.bind.JAXBElement@103fdc7f+o(1), as x → +∞, where ρb,0 and ηb,0 are constants in ]0, 1[ depending only on b. In particular, we show that x0.526 < # (Figure presented.) 10,0(x) < x0.787, for all sufficiently large x. This improves the bounds x0.495 < # (Figure presented.) 10,0(x) < x0.901, which were proved by De Koninck and Luca.
File in questo prodotto:
File Dimensione Formato  
temp.pdf

Open Access dal 08/08/2020

Descrizione: Articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 279.54 kB
Formato Adobe PDF
279.54 kB Adobe PDF Visualizza/Apri
On numbers divisible by the product of their nonzero base b digits.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 222.23 kB
Formato Adobe PDF
222.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2789376