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ON NUMBERS DIVISIBLE BY THE PRODUCT OF

THEIR NONZERO BASE b DIGITS

CARLO SANNA†

Abstract. For each integer b ≥ 3 and every x ≥ 1, let Nb,0(x) be the set of positive integers
n ≤ x which are divisible by the product of their nonzero base b digits. We prove bounds of
the form xρb,0+o(1) < #Nb,0(x) < xηb,0+o(1), as x → +∞, where ρb,0 and ηb,0 are constants
in ]0, 1[ depending only on b. In particular, we show that x0.526 < #N10,0(x) < x0.787, for
all sufficiently large x. This improves the bounds x0.495 < #N10,0(x) < x0.901, which were
proved by De Koninck and Luca.

1. Introduction

Let b ≥ 2 be an integer. Then, every positive integer n has a unique representation as

n =
∑̀
j=0

djb
j , d0, . . . , d` ∈ {0, . . . , b− 1}, d` 6= 0,

where d0, . . . , d` are the base b digits of n. Positive integers whose base b digits obey certain
restrictions have been investigated by several authors. For instance, an asymptotic formula for
the counting function of b-Niven numbers, that is, positive integers divisible by the sum of their
base b digits, has been proved by De Koninck, Doyon, and Kátai [4], and (independently) by
Mauduit, Pomerance, and Sárközy [9]. Also, arithmetic properties of integers with a fixed sum
of their base b digits have been studied by Luca [8], Mauduit and Sárközy [10]. Moreover, prime
numbers with specific restrictions on their base b digits have been investigated by Bourgain [1, 2]
and Maynard [11, 12] (see [3, 7] for similar works on almost primes and squarefree numbers).

Let pb(n) be the product of the base b digits of n, and let pb,0(n) be the product of the
nonzero base b digits of n. For all x ≥ 1, define the sets

Nb(x) :=
{
n ≤ x : pb(n) | n

}
and Nb,0(x) :=

{
n ≤ x : pb,0(n) | n

}
.

Note that Nb(x) ⊆ Nb,0(x) and that n ∈ Nb(x) implies that all the base b digits of n are

nonzero. Furthermore, N2(x) =
{

2k − 1 : k ≥ 1
}

and N2,0(x) = N. Hence, in what follows, we
will focus only on the case b ≥ 3.

De Koninck and Luca [5] (see also [6] for the correction of a numerical error in [5]) studied
N10(x) and N10,0(x). They proved the following bounds.

Theorem 1.1. We have

x0.122 < #N10(x) < x0.863

and

x0.495 < #N10,0(x) < x0.901

for all sufficiently large x.

In this paper, we prove some bounds for the cardinalities of Nb(x) and Nb,0(x). In particular,
for b = 10, we get the following improvement of three of the bounds of Theorem 1.1.
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2 C. SANNA

Theorem 1.2. We have

#N10(x) < x0.717

and

x0.526 < #N10,0(x) < x0.787

for all sufficiently large x.

Notation. We use the Landau–Bachmann “little oh” notation o, as well as the Vinogradov
symbol �. We omit the dependence on b of the implied constants. We write P (n) for the
greatest prime factor of an integer n > 1. As usual, π(x) denotes the number of prime numbers
not exceeding x. We write νp for the p-adic valuation.

2. Upper bounds

For every s ≥ 0, let us define

ζb(s) :=
b−1∑
d=1

1

ds
.

We give the following upper bounds for #Nb,0(x) and #Nb(x).

Theorem 2.1. Let b ≥ 3 be an integer. We have

#Nb,0(x) < xηb,0+o(1),

as x→ +∞, where

ηb,0 := 1 +
1

(1 + sb,0) log b
log

(
1 + ζb(sb,0)

b

)
∈ ]0, 1[

and sb,0 is the unique solution of the equation

(1)
(1 + s)ζ ′b(s)

1 + ζb(s)
− log

(
1 + ζb(s)

b

)
= 0

over the positive real numbers.

Theorem 2.2. Let b ≥ 3 be an integer. We have

#Nb(x) < xηb+o(1),

as x→ +∞, where η3 := log 2/ log 3,

ηb := 1 +
1

(1 + sb) log b
log

(
ζb(sb)

b

)
, b ≥ 4,

and sb is the unique solution of the equation

(2)
(1 + s)ζ ′b(s)

ζb(s)
− log

(
ζb(s)

b

)
= 0

over the positive real numbers.

We remark that for b = 3 the bound of Theorem 2.2 is obvious. Indeed, it is an easy
consequence of the fact that all the base 3 digits of each n ∈ N3(x) are equal to 1 or 2. We
included it just for completeness.

Using the PARI/GP [13] computer algebra system, the author computed s10,0 = 1.286985. . .
and s10 = 1.392189. . . , which in turn give η10,0 = 0.7869364. . . and η10 = 0.7167170. . . Hence,
the upper bounds of Theorem 1.2 follow.



ON NUMBERS DIVISIBLE BY THE PRODUCT OF THEIR NONZERO BASE b DIGITS 3

Proof of Theorem 2.1. First, we shall prove that Equation (1) has a unique positive solution.
For s ≥ 0, let

Fb(s) :=
(1 + s)ζ ′b(s)

1 + ζb(s)
− log

(
1 + ζb(s)

b

)
.

Since b ≥ 3, we have

(3) Fb(0) = − log((b− 1)!)

b
< 0 and lim

s→+∞
Fb(s) = log

(
b

2

)
> 0.

Furthermore, a bit of computation shows that

(4) F ′b(s) =
(1 + s)

(
(1 + ζb(s))ζ

′′
b (s)− (ζ ′b(s))

2
)

(1 + ζb(s))2
> 0,

for all s ≥ 0, since, by Cauchy–Schwarz inequality, we have

(5) (ζ ′b(s))
2 =

(
−

b−1∑
d=1

(log d)d−s

)2

<

(
b−1∑
d=1

d−s

)(
b−1∑
d=1

(log d)2d−s

)
= ζb(s)ζ

′′
b (s).

At this point, by (3) and (4), it follows that Equation (1) has a unique positive solution.
Let us assume x ≥ 1 sufficiently large, and let α ∈ ]0, 1[ be a constant (depending on b) to

be determined later. Also, let Pb be the greatest prime number less than b, and define the set

N ′b (x) :=
{
n ≤ x : d | n for some d > xα with P (d) ≤ Pb

}
.

Suppose n ∈ N ′b (x). Then there exists d > xα with P (d) ≤ Pb such that d | n. Clearly, for any
fixed d, there are at most x/d possible values for n. Moreover, setting

S(t) :=
{
d ≤ t : P (d) ≤ Pb

}
,

it follows easily that #S(t)� (log t)π(Pb) for all t > 2. Therefore, we have

#N ′b (x) ≤
∑

xα<d≤x

x

d
= x

(
#S(t)

t

∣∣∣∣x
t=xα

+

∫ x

t=xα

#S(t)

t2
dt

)
� (log x)π(Pb)

(
1 + x1−α

)
,

and consequently

(6) #N ′b (x) < x1−α+o(1),

as x→ +∞.
Now suppose n ∈ N ′′b,0(x) := Nb,0(x) \ N ′b (x). Put N := blog x/ log bc + 1, so that n has

at most N base b digits. For each d ∈ {1, . . . , b − 1}, let Nd be the number of base b digits
of n which are equal to d. Also, let N0 := N − (N1 + · · · + Nb−1). Hence, N0, . . . , Nb−1 are
nonnegative integers such that N0 + · · ·+Nb−1 = N . Furthermore,

pb,0(n) = 1N1 · · · (b− 1)Nb−1 ≤ xα < bαN .

Let β > 0 be a constant (depending on b) to be determined later. For fixed N0, . . . , Nb−1, by
elementary combinatorics, the number of possible values for n is at most

N !

N0! · · ·Nb−1!
.

Hence, summing over all possible values for N0, . . . , Nb−1, we get

#N ′′b,0(x) ≤
∑

N0+···+Nb−1 =N

1N1 ···(b−1)Nb−1 ≤ bαN

N !

N0! · · ·Nb−1!

≤
∑

N0+···+Nb−1 =N

N !

N0! · · ·Nb−1!

(
bαN

1N1 · · · (b− 1)Nb−1

)β
=
(
bαβ(1 + ζb(β))

)N
,
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where we employed the multinomial theorem. Therefore, since N ≤ log x/ log b+ 1, we have

(7) #N ′′b,0(x) < xγ+o(1),

as x→ +∞, where

(8) γ := αβ +
log(1 + ζb(β))

log b
.

At this point, in light of (6) and (7), we shall choose α and β so that max{1 − α, γ} is
minimal. It is easy to see that this requires 1− α = γ, which in turn gives

α = − 1

(1 + β) log b
log

(
1 + ζb(β)

b

)
.

Note that this choice indeed satisfies α ∈ ]0, 1[, as required in our previous arguments. Hence,
we have to choose β in order to minimize

γ = 1 +
1

(1 + β) log b
log

(
1 + ζb(β)

b

)
.

Since
∂γ

∂β
=

Fb(β)

(1 + β)2 log b
,

by the previous considerations on Fb(s), we get that γ is minimal for β = sb,0. Thus, we make
this choice for β, so that 1− α = γ = ηb,0. Finally, putting together (6) and (7), we obtain

#Nb,0(x) < x1−α+o(1) + xγ+o(1) < xηb,0+o(1)

as x→ +∞. The proof is complete.

Proof of Theorem 2.2. The proof of Theorem 2.2 proceeds similarly to the one of Theorem 2.1.
We highlight just the main differences. First, we shall prove that, for b ≥ 4, Equation (2) has
a unique positive solution. For s ≥ 0, define

Gb(s) :=
(1 + s)ζ ′b(s)

ζb(s)
− log

(
ζb(s)

b

)
.

Since b ≥ 4, we have

(9) Gb(0) = − log

((
1− 1

b

)
(b− 1)!1/(b−1)

)
< 0 and lim

s→+∞
Gb(s) = log b > 0.

Furthermore, a bit of computation shows that

(10) G′b(s) =
(1 + s)(ζb(s)ζ

′′
b (s)− (ζ ′b(s))

2)

(ζb(s))2
> 0,

for all s ≥ 0, since (5). Therefore, by (9) and (10), Equation (2) has a unique positive solution.
Note also that G3(0) > 0, so that G3(s) > 0 for all s ≥ 0.

Let α ∈ ]0, 1[ be a constant (depending on b) to be determined later, and define N ′b (x) as
in the proof of Theorem 2.1. Hence, by the previous arguments, the bound (6) holds.

Suppose n ∈ N ′′b (x) := Nb(x) \ N ′b (x). This time, put N := blog n/ log bc + 1 (instead of
N := blog x/ log bc+ 1), so that n has exactly N base b digits. For each d ∈ {1, . . . , b− 1}, let
Nd be the number of base b digits of n which are equal to d. Note that, since pb(n) | n, we have
pb(n) 6= 0, that is, all the base b digits of n are nonzero. Hence, N1, . . . , Nb−1 are nonnegative
integers such that N1 + · · ·+Nb−1 = N . Furthermore,

pb(n) = 1N1 · · · (b− 1)Nb−1 ≤ xα < bαN .



ON NUMBERS DIVISIBLE BY THE PRODUCT OF THEIR NONZERO BASE b DIGITS 5

Let β > 0 be a constant (depending on b) to be determined later. Summing over all possible
values for N1, . . . , Nb−1 and N , we get

#N ′′b (x) ≤
blog x/ log bc+1∑

N =1

∑
N1+···+Nb−1 =N

1N1 ···(b−1)Nb−1 ≤ bαN

N !

N1! · · ·Nb−1!

≤
blog x/ log bc+1∑

N =1

∑
N0+···+Nb−1 =N

N !

N1! · · ·Nb−1!

(
bαN

1N1 · · · (b− 1)Nb−1

)β

=

blog x/ log bc+1∑
N =1

(bαβζb(β))N � (bαβζb(β))log x/ log b,

and consequently

(11) #N ′′b (x) < xδ+o(1),

as x→ +∞, where

(12) δ := αβ +
log ζb(β)

log b
.

At this point, in light of (6) and (11), we shall choose α and β so that max{1−α, δ} is minimal.
This requires 1− α = δ, which in turn yields

α = − 1

(1 + β) log b
log

(
ζb(β)

b

)
.

Note that this choice indeed satisfies α ∈ ]0, 1[, as required in our previous arguments. Hence,
we have to minimize

δ = 1 +
1

(1 + β) log b
log

(
ζb(β)

b

)
.

We have
∂δ

∂β
=

Gb(β)

(1 + β)2 log b
.

Hence, by the previous considerations on Gb(s), for b = 3 we have to choose β = 0, while if
b ≥ 4 we have to choose β = sb. Making this choice, we get 1 − α = δ = ηb. Finally, putting
together (6) and (11), we obtain

#Nb(x) < x1−α+o(1) + xδ+o(1) < xηb+o(1)

as x→ +∞. The proof is complete.

3. Lower bound

Theorem 3.1. Let b ≥ 3 be an integer. We have

(13) #Nb,0(x) > xρb,0+o(1),

as x→ +∞, where

(14) ρb,0 := sup
α0,...,αb−1

(∑b−1
d=1 αd

)
log
(∑b−1

d=1 αd

)
−
∑b−1

d=1 αd logαd(
1 +

∑b−1
d=1 αd

)
log b

with α0, . . . , αb−1 ≥ 0 satisfying the conditions

(15)

{
αd = 0 if d > 1 and p | d, p - b for some prime p,∑b−1

d=2 αdνp(d) ≤ 1 for all primes p | b,

and with the convention 0 · log 0 := 0.
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We remark that if b is a prime number then the bound of Theorem 3.1 is obvious. Indeed,
the primality of b implies αd = 0 for each d ∈ {2, . . . , b− 1}, so that

ρb,0 = sup
α0,α1≥0

(α0 + α1) log(α0 + α1)− α0 logα0 − α1 logα1

(1 + α0 + α1) log b
=

log 2

log b
,

and the bound is

(16) #Nb,0(x) > xlog 2/ log b+o(1),

as x → +∞. However, the bound (16) follows just by considering that Nb,0(x) contains all
positive integers having their base b digits in {0, 1}.

If b is not a prime number, then Theorem 3.1 gives a better bound than (16). In particular,
for b = 10, conditions (15) become

(17)


α3 = α6 = α7 = α9 = 0,

α2 + 2α4 + 3α8 ≤ 1,

α5 ≤ 1,

and the right-hand side of (14) can be maximized under the constrains given by (17) using the
method of Lagrange multipliers. This gives ρ10,0 > 0.526, for the choice

α0 = α1 = 1.331, α2 = 0.476, α4 = 0.170, α5 = 1, α8 = 0.060 .

Hence, the lower bound for #N10,0(x) of Theorem 1.2 follows.

3.1. Proof of Theorem 3.1. Let us assume x ≥ 1 sufficiently large, and let α0, . . . , αb−1 ≥ 0
be constants (depending on b) to be determined later. Define

s :=

⌊
log x

(1 + α0 + · · ·+ αb−1) log b

⌋
.

Also, let Nd := bαdsc for each d ∈ {0, . . . , b− 1}, and put N := N0 + · · ·+Nb−1.
Now suppose m is a positive integer with at most N base b digits, and such that exactly Nd

of its base b digits are equal to d, for each d ∈ {1, . . . , b− 1}. Moreover, put n := bsm. Clearly,
n ≤ bs+N ≤ x and bs | n. Then, imposing the conditions (15), we get that

pb,0(n) = 1N1 · · · (b− 1)Nb−1 | bs | n,
so that n ∈ Nb,0(x). By elementary combinatorics and by using Stirling’s formula, the number
of possible values for m is

N !

N0! · · ·Nb−1!
=

(bα0sc+ · · ·+ bαb−1sc)!
bα0sc! · · · bαb−1sc!

= exp

(
s

((
b−1∑
d=1

αd

)
log

(
b−1∑
d=1

αd

)
−

b−1∑
d=1

αd logαd + o(1)

))
,

as s→ +∞. Hence, lower bound (13) follows. The proof is complete.
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