Atrial electrogram (AEG) acquired with a high spatio-temporal resolution is a promising approach for early detection of atrial fibrillation. Due to the high data rate, transmission of AEG signals requires considerable energy, making its adoption a challenge for low-power wireless devices. In this paper, we investigate the feasibility of using compressed sensing (CS) for the acquisition of AEGs while reducing redundant data without losing information. We apply two CS approaches, standard CS and rakeness-based CS (rak-CS) on real medical recordings. We find that the AEGs are compressible in time, and, more interestingly, in the spatial domain. The performance of rakCS is better than standard CS, especially at higher compression ratios (CR), both during sinus rhythm (SR) and atrial fibrillation (AF). More specifically, the difference in the achieved average reconstruction signal-to-noise (ARSNR) in rak-CS and standard CS, for CR = 4.26, in the time domain is 7.7 dB and 2.6 dB for AF and SR, respectively. Multi-channel data is modeled as a multiple-measurement-vector problem and a suitable mixed norm is used to exploit the group structure of the signals in the spatial domain to obtain improved reconstruction performance over l1 norm minimization. Using the mixed-norm recovery approach, for CR = 4.26, the difference in achieved ARSNR performance between rak-CS and standard CS is 5 dB and 2 dB for AF and SR, respectively.
Rakeness-based compressed sensing of atrial electrograms for the diagnosis of atrial fibrillation / Rout, S.; Mangia, M.; Pareschi, F.; Setti, G.; Rovatti, R.; Serdijn, W. A.. - STAMPA. - 2019:(2019), pp. 1-5. (Intervento presentato al convegno 2019 IEEE International Symposium on Circuits and Systems tenutosi a Sapporo (Japan) nel May 26-29, 2019) [10.1109/ISCAS.2019.8702398].
Rakeness-based compressed sensing of atrial electrograms for the diagnosis of atrial fibrillation
Pareschi F.;Setti G.;
2019
Abstract
Atrial electrogram (AEG) acquired with a high spatio-temporal resolution is a promising approach for early detection of atrial fibrillation. Due to the high data rate, transmission of AEG signals requires considerable energy, making its adoption a challenge for low-power wireless devices. In this paper, we investigate the feasibility of using compressed sensing (CS) for the acquisition of AEGs while reducing redundant data without losing information. We apply two CS approaches, standard CS and rakeness-based CS (rak-CS) on real medical recordings. We find that the AEGs are compressible in time, and, more interestingly, in the spatial domain. The performance of rakCS is better than standard CS, especially at higher compression ratios (CR), both during sinus rhythm (SR) and atrial fibrillation (AF). More specifically, the difference in the achieved average reconstruction signal-to-noise (ARSNR) in rak-CS and standard CS, for CR = 4.26, in the time domain is 7.7 dB and 2.6 dB for AF and SR, respectively. Multi-channel data is modeled as a multiple-measurement-vector problem and a suitable mixed norm is used to exploit the group structure of the signals in the spatial domain to obtain improved reconstruction performance over l1 norm minimization. Using the mixed-norm recovery approach, for CR = 4.26, the difference in achieved ARSNR performance between rak-CS and standard CS is 5 dB and 2 dB for AF and SR, respectively.File | Dimensione | Formato | |
---|---|---|---|
08702398.pdf
non disponibili
Descrizione: Editorial Version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
733.99 kB
Formato
Adobe PDF
|
733.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ISCAS2019-SampiRake.pdf
accesso aperto
Descrizione: Author version of the Paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
781.42 kB
Formato
Adobe PDF
|
781.42 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2786382