Atrial electrogram (AEG) acquired with a high spatio-temporal resolution is a promising approach for early detection of atrial fibrillation. Due to the high data rate, transmission of AEG signals requires considerable energy, making its adoption a challenge for low-power wireless devices. In this paper, we investigate the feasibility of using compressed sensing (CS) for the acquisition of AEGs while reducing redundant data without losing information. We apply two CS approaches, standard CS and rakeness-based CS (rak-CS) on real medical recordings. We find that the AEGs are compressible in time, and, more interestingly, in the spatial domain. The performance of rakCS is better than standard CS, especially at higher compression ratios (CR), both during sinus rhythm (SR) and atrial fibrillation (AF). More specifically, the difference in the achieved average reconstruction signal-to-noise (ARSNR) in rak-CS and standard CS, for CR = 4.26, in the time domain is 7.7 dB and 2.6 dB for AF and SR, respectively. Multi-channel data is modeled as a multiple-measurement-vector problem and a suitable mixed norm is used to exploit the group structure of the signals in the spatial domain to obtain improved reconstruction performance over l1 norm minimization. Using the mixed-norm recovery approach, for CR = 4.26, the difference in achieved ARSNR performance between rak-CS and standard CS is 5 dB and 2 dB for AF and SR, respectively.

Rakeness-based compressed sensing of atrial electrograms for the diagnosis of atrial fibrillation / Rout, S.; Mangia, M.; Pareschi, F.; Setti, G.; Rovatti, R.; Serdijn, W. A.. - STAMPA. - 2019:(2019), pp. 1-5. (Intervento presentato al convegno 2019 IEEE International Symposium on Circuits and Systems tenutosi a Sapporo (Japan) nel May 26-29, 2019) [10.1109/ISCAS.2019.8702398].

Rakeness-based compressed sensing of atrial electrograms for the diagnosis of atrial fibrillation

Pareschi F.;Setti G.;
2019

Abstract

Atrial electrogram (AEG) acquired with a high spatio-temporal resolution is a promising approach for early detection of atrial fibrillation. Due to the high data rate, transmission of AEG signals requires considerable energy, making its adoption a challenge for low-power wireless devices. In this paper, we investigate the feasibility of using compressed sensing (CS) for the acquisition of AEGs while reducing redundant data without losing information. We apply two CS approaches, standard CS and rakeness-based CS (rak-CS) on real medical recordings. We find that the AEGs are compressible in time, and, more interestingly, in the spatial domain. The performance of rakCS is better than standard CS, especially at higher compression ratios (CR), both during sinus rhythm (SR) and atrial fibrillation (AF). More specifically, the difference in the achieved average reconstruction signal-to-noise (ARSNR) in rak-CS and standard CS, for CR = 4.26, in the time domain is 7.7 dB and 2.6 dB for AF and SR, respectively. Multi-channel data is modeled as a multiple-measurement-vector problem and a suitable mixed norm is used to exploit the group structure of the signals in the spatial domain to obtain improved reconstruction performance over l1 norm minimization. Using the mixed-norm recovery approach, for CR = 4.26, the difference in achieved ARSNR performance between rak-CS and standard CS is 5 dB and 2 dB for AF and SR, respectively.
2019
978-1-7281-0397-6
File in questo prodotto:
File Dimensione Formato  
08702398.pdf

non disponibili

Descrizione: Editorial Version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 733.99 kB
Formato Adobe PDF
733.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ISCAS2019-SampiRake.pdf

accesso aperto

Descrizione: Author version of the Paper
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 781.42 kB
Formato Adobe PDF
781.42 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2786382