We present a general framework for the fully automated extraction of stable and passive parameterized macromodels from sampled frequency responses. The proposed iterative algorithm provides an automated selection of the optimal parameter configurations to be simulated by a field solver, based on a combination of data-driven and model-driven metrics. The resulting frequency responses are fitted by a parameterized rational macromodel, whose uniform stability and passivity are enforced. We demonstrate the effectiveness of this framework on a transmission-line network test case.
An Adaptive Algorithm for Fully Automated Extraction of Passive Parameterized Macromodels / Fevola, E.; Zanco, A.; Grivet-Talocia, S.; Bradde, T.; De Stefano, M.. - ELETTRONICO. - (2019), pp. 1-4. (Intervento presentato al convegno 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO 2019 tenutosi a Boston (MA) USA nel 29-31 May 2019) [10.1109/NEMO.2019.8853720].
An Adaptive Algorithm for Fully Automated Extraction of Passive Parameterized Macromodels
Fevola E.;Zanco A.;Grivet-Talocia S.;Bradde T.;De Stefano M.
2019
Abstract
We present a general framework for the fully automated extraction of stable and passive parameterized macromodels from sampled frequency responses. The proposed iterative algorithm provides an automated selection of the optimal parameter configurations to be simulated by a field solver, based on a combination of data-driven and model-driven metrics. The resulting frequency responses are fitted by a parameterized rational macromodel, whose uniform stability and passivity are enforced. We demonstrate the effectiveness of this framework on a transmission-line network test case.| File | Dimensione | Formato | |
|---|---|---|---|
| cnf-2019-nemo-adaptive-ieee.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										745.99 kB
									 
										Formato
										Adobe PDF
									 | 745.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| cnf-2019-nemo-adaptive.pdf accesso aperto 
											Descrizione: Post-Print author version
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										665.12 kB
									 
										Formato
										Adobe PDF
									 | 665.12 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2773095
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
