We present a general framework for the fully automated extraction of stable and passive parameterized macromodels from sampled frequency responses. The proposed iterative algorithm provides an automated selection of the optimal parameter configurations to be simulated by a field solver, based on a combination of data-driven and model-driven metrics. The resulting frequency responses are fitted by a parameterized rational macromodel, whose uniform stability and passivity are enforced. We demonstrate the effectiveness of this framework on a transmission-line network test case.
An Adaptive Algorithm for Fully Automated Extraction of Passive Parameterized Macromodels / Fevola, E.; Zanco, A.; Grivet-Talocia, S.; Bradde, T.; De Stefano, M.. - ELETTRONICO. - (2019), pp. 1-4. (Intervento presentato al convegno 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO 2019 tenutosi a Boston (MA) USA nel 29-31 May 2019) [10.1109/NEMO.2019.8853720].
An Adaptive Algorithm for Fully Automated Extraction of Passive Parameterized Macromodels
Fevola E.;Zanco A.;Grivet-Talocia S.;Bradde T.;De Stefano M.
2019
Abstract
We present a general framework for the fully automated extraction of stable and passive parameterized macromodels from sampled frequency responses. The proposed iterative algorithm provides an automated selection of the optimal parameter configurations to be simulated by a field solver, based on a combination of data-driven and model-driven metrics. The resulting frequency responses are fitted by a parameterized rational macromodel, whose uniform stability and passivity are enforced. We demonstrate the effectiveness of this framework on a transmission-line network test case.File | Dimensione | Formato | |
---|---|---|---|
cnf-2019-nemo-adaptive-ieee.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
745.99 kB
Formato
Adobe PDF
|
745.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cnf-2019-nemo-adaptive.pdf
accesso aperto
Descrizione: Post-Print author version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
665.12 kB
Formato
Adobe PDF
|
665.12 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2773095
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo