In pattern recognition, neural networks can be used not only for the classification task, but also for feature selection and other intermediate steps. This paper addresses the 3D face recognition problem in order to select the most meaningful geometric descriptors. At this aim, the classification results are directly integrated in a biclustering process in order to select the best leaves of a neural hierarchical tree. This tree is created by a novel neural network GH-EXIN. This approach results in a new criterion for the feature selection. This technique is applied to a database of face expressions where both traditional and novel geometric descriptors are used. The results state the importance of the curvedness novel descriptors and only of a few Euclidean distances

Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network / Ciravegna, G.; Cirrincione, G.; Marcolin, F.; Barbiero, P.; Dagnes, N.; Piccolo, E.. - 151:(2020), pp. 223-233. (Intervento presentato al convegno The Italian Workshop on Neural Networks WIRN 2018) [10.1007/978-981-13-8950-4_21].

Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network

Ciravegna G.;Cirrincione G.;Marcolin F.;Dagnes N.;Piccolo E.
2020

Abstract

In pattern recognition, neural networks can be used not only for the classification task, but also for feature selection and other intermediate steps. This paper addresses the 3D face recognition problem in order to select the most meaningful geometric descriptors. At this aim, the classification results are directly integrated in a biclustering process in order to select the best leaves of a neural hierarchical tree. This tree is created by a novel neural network GH-EXIN. This approach results in a new criterion for the feature selection. This technique is applied to a database of face expressions where both traditional and novel geometric descriptors are used. The results state the importance of the curvedness novel descriptors and only of a few Euclidean distances
2020
978-9-8113-8949-8
978-9-8113-8950-4
File in questo prodotto:
File Dimensione Formato  
978-981-13-8950-4_compressed.pdf

accesso riservato

Descrizione: eBook
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 8.89 MB
Formato Adobe PDF
8.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network.pdf

accesso riservato

Descrizione: Article
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 250.63 kB
Formato Adobe PDF
250.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2770197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo