In pattern recognition, neural networks can be used not only for the classification task, but also for feature selection and other intermediate steps. This paper addresses the 3D face recognition problem in order to select the most meaningful geometric descriptors. At this aim, the classification results are directly integrated in a biclustering process in order to select the best leaves of a neural hierarchical tree. This tree is created by a novel neural network GH-EXIN. This approach results in a new criterion for the feature selection. This technique is applied to a database of face expressions where both traditional and novel geometric descriptors are used. The results state the importance of the curvedness novel descriptors and only of a few Euclidean distances
Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network / Ciravegna, G.; Cirrincione, G.; Marcolin, F.; Barbiero, P.; Dagnes, N.; Piccolo, E.. - 151:(2020), pp. 223-233. (Intervento presentato al convegno The Italian Workshop on Neural Networks WIRN 2018) [10.1007/978-981-13-8950-4_21].
Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network
Ciravegna G.;Cirrincione G.;Marcolin F.;Dagnes N.;Piccolo E.
2020
Abstract
In pattern recognition, neural networks can be used not only for the classification task, but also for feature selection and other intermediate steps. This paper addresses the 3D face recognition problem in order to select the most meaningful geometric descriptors. At this aim, the classification results are directly integrated in a biclustering process in order to select the best leaves of a neural hierarchical tree. This tree is created by a novel neural network GH-EXIN. This approach results in a new criterion for the feature selection. This technique is applied to a database of face expressions where both traditional and novel geometric descriptors are used. The results state the importance of the curvedness novel descriptors and only of a few Euclidean distances| File | Dimensione | Formato | |
|---|---|---|---|
| 978-981-13-8950-4_compressed.pdf accesso riservato 
											Descrizione: eBook
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										8.89 MB
									 
										Formato
										Adobe PDF
									 | 8.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network.pdf accesso riservato 
											Descrizione: Article
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										250.63 kB
									 
										Formato
										Adobe PDF
									 | 250.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2770197
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
