In pattern recognition, neural networks can be used not only for the classification task, but also for feature selection and other intermediate steps. This paper addresses the 3D face recognition problem in order to select the most meaningful geometric descriptors. At this aim, the classification results are directly integrated in a biclustering process in order to select the best leaves of a neural hierarchical tree. This tree is created by a novel neural network GH-EXIN. This approach results in a new criterion for the feature selection. This technique is applied to a database of face expressions where both traditional and novel geometric descriptors are used. The results state the importance of the curvedness novel descriptors and only of a few Euclidean distances
Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network / Ciravegna, G.; Cirrincione, G.; Marcolin, F.; Barbiero, P.; Dagnes, N.; Piccolo, E.. - 151:(2020), pp. 223-233. (Intervento presentato al convegno The Italian Workshop on Neural Networks WIRN 2018) [10.1007/978-981-13-8950-4_21].
Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network
Ciravegna G.;Cirrincione G.;Marcolin F.;Dagnes N.;Piccolo E.
2020
Abstract
In pattern recognition, neural networks can be used not only for the classification task, but also for feature selection and other intermediate steps. This paper addresses the 3D face recognition problem in order to select the most meaningful geometric descriptors. At this aim, the classification results are directly integrated in a biclustering process in order to select the best leaves of a neural hierarchical tree. This tree is created by a novel neural network GH-EXIN. This approach results in a new criterion for the feature selection. This technique is applied to a database of face expressions where both traditional and novel geometric descriptors are used. The results state the importance of the curvedness novel descriptors and only of a few Euclidean distancesFile | Dimensione | Formato | |
---|---|---|---|
978-981-13-8950-4_compressed.pdf
accesso riservato
Descrizione: eBook
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
8.89 MB
Formato
Adobe PDF
|
8.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Assessing Discriminating Capability of Geometrical Descriptors for 3D Face Recognition by Using the GH-EXIN Neural Network.pdf
accesso riservato
Descrizione: Article
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
250.63 kB
Formato
Adobe PDF
|
250.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2770197
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo