The increasing use of electric vehicles connected to the power grid gives rise to challenges in the vehicle charging coordination, cost management, and provision of potential services to the grid. Scheduling of the power in an electric vehicle charging station is a quite challenging task, considering time-variant prices, customers with different charging time preferences, and the impact on the grid operations. The latter aspect can be addressed by exploiting the vehicle charging flexibility. In this article, a specific definition of flexibility to be used for an electric vehicle charging station is provided. Two optimal charging strategies are then proposed and evaluated, with the purpose of determining which strategy can offer spinning reserve services to the electrical grid, reducing at the same time the operation costs of the charging station. These strategies are based on a novel formulation of an economic model predictive control algorithm, aimed at minimising the charging station operation cost, and on a novel formulation of the flexibility capacity maximisation, while reducing the operation costs. These formulations incorporate the uncertainty in the arrival time and state of charge of the electric vehicles at their arrival. Both strategies lead to a considerable reduction of the costs with respect to a simple minimum time charging strategy, taken as the benchmark. In particular, the strategy that also accounts for flexibility maximisation emerges as a new tool for maintaining the grid balance giving cost savings to the charging stations.

Optimal Strategy to Exploit the Flexibility of an Electric Vehicle Charging Station / Cesar, Diaz-Londono; Colangelo, Luigi; Ruiz, Fredy; Patino, Diego; Novara, Carlo; Chicco, Gianfranco. - In: ENERGIES. - ISSN 1996-1073. - 12:(2019). [10.3390/en12203834]

Optimal Strategy to Exploit the Flexibility of an Electric Vehicle Charging Station

Cesar Diaz-Londono;Luigi Colangelo;Carlo Novara;Gianfranco Chicco
2019

Abstract

The increasing use of electric vehicles connected to the power grid gives rise to challenges in the vehicle charging coordination, cost management, and provision of potential services to the grid. Scheduling of the power in an electric vehicle charging station is a quite challenging task, considering time-variant prices, customers with different charging time preferences, and the impact on the grid operations. The latter aspect can be addressed by exploiting the vehicle charging flexibility. In this article, a specific definition of flexibility to be used for an electric vehicle charging station is provided. Two optimal charging strategies are then proposed and evaluated, with the purpose of determining which strategy can offer spinning reserve services to the electrical grid, reducing at the same time the operation costs of the charging station. These strategies are based on a novel formulation of an economic model predictive control algorithm, aimed at minimising the charging station operation cost, and on a novel formulation of the flexibility capacity maximisation, while reducing the operation costs. These formulations incorporate the uncertainty in the arrival time and state of charge of the electric vehicles at their arrival. Both strategies lead to a considerable reduction of the costs with respect to a simple minimum time charging strategy, taken as the benchmark. In particular, the strategy that also accounts for flexibility maximisation emerges as a new tool for maintaining the grid balance giving cost savings to the charging stations.
2019
File in questo prodotto:
File Dimensione Formato  
energies-12-03834.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2759959
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo