Selective Laser Melting (SLM) is one of the leader metal Additive Manufacturing (AM) processes thanks to its capability of coupling freeform design and environmental and economical sustainability to high mechanical properties. AlSi10Mg is a light weight Al-alloy with interesting processing properties and enhanced strength thanks to the presence of Mg, which, hence, finds application in several industrial fields. Furthermore, SLM allows overcoming those design constraints set by casting and melt spinning; however, SLM AlSi10Mg components require to be heat treated, both to strengthen the material and to engineer the microstructure. In this work, in order to assess the effectiveness of heat treatments on AlSi10Mg by SLM, an ad hoc analysis procedure based on statistical tools is applied in combination with indentation characterisation tests. In particular, to achieve full scale characterisation, traditional Brinell hardness and Instrumented Indentation Test (IIT) in macro and nano-range are considered. In particular, IIT is applied both at the lower end of macro range to provide consistency and statistically investigate relationship with Brinell scale and in the nano-range, enabling local, i.e. grain, and surface properties to be characterised.

Assessment of heat treatment effect on AlSi10Mg by selective laser melting through indentation testing / Maculotti, G.; Genta, G.; Lorusso, M.; Galetto, M.. - 813:(2019), pp. 171-177. (Intervento presentato al convegno 33rd Surface Modification Technologies Conference (SMT 33)) [10.4028/www.scientific.net/KEM.813.171].

Assessment of heat treatment effect on AlSi10Mg by selective laser melting through indentation testing

Maculotti G.;Genta G.;Lorusso M.;Galetto M.
2019

Abstract

Selective Laser Melting (SLM) is one of the leader metal Additive Manufacturing (AM) processes thanks to its capability of coupling freeform design and environmental and economical sustainability to high mechanical properties. AlSi10Mg is a light weight Al-alloy with interesting processing properties and enhanced strength thanks to the presence of Mg, which, hence, finds application in several industrial fields. Furthermore, SLM allows overcoming those design constraints set by casting and melt spinning; however, SLM AlSi10Mg components require to be heat treated, both to strengthen the material and to engineer the microstructure. In this work, in order to assess the effectiveness of heat treatments on AlSi10Mg by SLM, an ad hoc analysis procedure based on statistical tools is applied in combination with indentation characterisation tests. In particular, to achieve full scale characterisation, traditional Brinell hardness and Instrumented Indentation Test (IIT) in macro and nano-range are considered. In particular, IIT is applied both at the lower end of macro range to provide consistency and statistically investigate relationship with Brinell scale and in the nano-range, enabling local, i.e. grain, and surface properties to be characterised.
2019
9783035715255
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2751858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo