In flexion-extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of ulna respect to humerus in two human elbow specimens and to investigate the constraints role for maintaining the joint stability in different dissections condition. Two clusters of 4 markers were fixed respectively to ulna and humerus, and their trajectory was recorded by a motion capture system during orthopedic maneuver. Considering the medial ulnar collateral posterior bundle (pMUCL) and the coronoid, two dissection sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60°, 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline flexion condition. Respect to intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection=11.49±17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL dissection and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection=34.40±9.10 mm), 60° (deflection=45.41±18.47 mm) and 90° (deflection=52.16±21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.

Biomechanical role and motion contribution of ligaments and bony constraints in the elbow stability: A preliminary study / Panero, E.; Gastaldi, L.; Terzini, M.; Bignardi, C.; Sard, A.; Pastorelli, S.. - In: BIOENGINEERING. - ISSN 2306-5354. - ELETTRONICO. - 6:3(2019), pp. 68-79. [10.3390/bioengineering6030068]

Biomechanical role and motion contribution of ligaments and bony constraints in the elbow stability: A preliminary study

Panero E.;Gastaldi L.;Terzini M.;Bignardi C.;Pastorelli S.
2019

Abstract

In flexion-extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of ulna respect to humerus in two human elbow specimens and to investigate the constraints role for maintaining the joint stability in different dissections condition. Two clusters of 4 markers were fixed respectively to ulna and humerus, and their trajectory was recorded by a motion capture system during orthopedic maneuver. Considering the medial ulnar collateral posterior bundle (pMUCL) and the coronoid, two dissection sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60°, 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline flexion condition. Respect to intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection=11.49±17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL dissection and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection=34.40±9.10 mm), 60° (deflection=45.41±18.47 mm) and 90° (deflection=52.16±21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.
File in questo prodotto:
File Dimensione Formato  
Biomechanical Role and Motion Contribution of Ligaments and Bony Constraints in the Elbow Stability A Preliminary Study_printed.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2751738
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo