Turbulence modelling remains a challenge for the simulation of turbomachinery flows. Reynolds Averaged Navier-Stokes (RANS) equations will still be used for high-Reynolds number flows for several years and so there is interest in improving their prediction capability. Machine learning techniques offer several strategies which could be exploited for this purpose. In this work, an approach to improve the Spalart-Allmaras model is investigated. In particular, the model is used to predict the flow around the T106c low pressure gas turbine cascade. As a first step, an Artificial Neural Network (ANN) is trained on the data generated by the original model. Then, an optimisation procedure is applied in order to find the weights of the network which minimise the error between the predicted results and the available experimental data. The new model is tested at different Reynolds numbers on the T106c cascade and on a wind turbine airfoil in post-stall conditions. Significant improvements are observed in the condition chosen for the optimisation. Future work will be devoted to the generalisation of the approach by including multiple working conditions optimisations and adding new physical variables as inputs of the ANN.

RANS closure approximation by artificial neural networks / Ferrero, A.; Iollo, A.; Larocca, F.. - ELETTRONICO. - (2019), pp. 1-14. ((Intervento presentato al convegno 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2019 tenutosi a Lausanne (CH) nel April 8-12, 2019.

RANS closure approximation by artificial neural networks

Ferrero A.;Iollo A.;Larocca F.
2019

Abstract

Turbulence modelling remains a challenge for the simulation of turbomachinery flows. Reynolds Averaged Navier-Stokes (RANS) equations will still be used for high-Reynolds number flows for several years and so there is interest in improving their prediction capability. Machine learning techniques offer several strategies which could be exploited for this purpose. In this work, an approach to improve the Spalart-Allmaras model is investigated. In particular, the model is used to predict the flow around the T106c low pressure gas turbine cascade. As a first step, an Artificial Neural Network (ANN) is trained on the data generated by the original model. Then, an optimisation procedure is applied in order to find the weights of the network which minimise the error between the predicted results and the available experimental data. The new model is tested at different Reynolds numbers on the T106c cascade and on a wind turbine airfoil in post-stall conditions. Significant improvements are observed in the condition chosen for the optimisation. Future work will be devoted to the generalisation of the approach by including multiple working conditions optimisations and adding new physical variables as inputs of the ANN.
File in questo prodotto:
File Dimensione Formato  
ETC2019-264.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2749532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo