Turbulence modelling remains a challenge for the simulation of turbomachinery flows. Reynolds Averaged Navier-Stokes (RANS) equations will still be used for high-Reynolds number flows for several years and so there is interest in improving their prediction capability. Machine learning techniques offer several strategies which could be exploited for this purpose. In this work, an approach to improve the Spalart-Allmaras model is investigated. In particular, the model is used to predict the flow around the T106c low pressure gas turbine cascade. As a first step, an Artificial Neural Network (ANN) is trained on the data generated by the original model. Then, an optimisation procedure is applied in order to find the weights of the network which minimise the error between the predicted results and the available experimental data. The new model is tested at different Reynolds numbers on the T106c cascade and on a wind turbine airfoil in post-stall conditions. Significant improvements are observed in the condition chosen for the optimisation. Future work will be devoted to the generalisation of the approach by including multiple working conditions optimisations and adding new physical variables as inputs of the ANN.
RANS closure approximation by artificial neural networks / Ferrero, A.; Iollo, A.; Larocca, F.. - ELETTRONICO. - (2019), pp. 1-14. (Intervento presentato al convegno 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2019 tenutosi a Lausanne (CH) nel April 8-12, 2019).
RANS closure approximation by artificial neural networks
Ferrero A.;Iollo A.;Larocca F.
2019
Abstract
Turbulence modelling remains a challenge for the simulation of turbomachinery flows. Reynolds Averaged Navier-Stokes (RANS) equations will still be used for high-Reynolds number flows for several years and so there is interest in improving their prediction capability. Machine learning techniques offer several strategies which could be exploited for this purpose. In this work, an approach to improve the Spalart-Allmaras model is investigated. In particular, the model is used to predict the flow around the T106c low pressure gas turbine cascade. As a first step, an Artificial Neural Network (ANN) is trained on the data generated by the original model. Then, an optimisation procedure is applied in order to find the weights of the network which minimise the error between the predicted results and the available experimental data. The new model is tested at different Reynolds numbers on the T106c cascade and on a wind turbine airfoil in post-stall conditions. Significant improvements are observed in the condition chosen for the optimisation. Future work will be devoted to the generalisation of the approach by including multiple working conditions optimisations and adding new physical variables as inputs of the ANN.File | Dimensione | Formato | |
---|---|---|---|
ETC2019-264.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
4.3 MB
Formato
Adobe PDF
|
4.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2749532
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo