FPGA-based accelerators demonstrated high energy efficiency compared to GPUs and CPUs. However, single FPGA designs may not achieve sufficient task parallelism. In this work, we optimize the mapping of high-performance multi-kernel applications, like Convolutional Neural Networks, to multi-FPGA platforms. First, we formulate the system level optimization problem, choosing within a huge design space the parallelism and number of compute units for each kernel in the pipeline. Then we solve it using a combination of Geometric Programming, producing the optimum performance solution given resource and DRAM bandwidth constraints, and a heuristic allocator of the compute units on the FPGA cluster.
Exact and Heuristic Allocation of Multi-kernel Applications to Multi-FPGA Platforms / Shan, Junnan; Casu, Mario R.; Cortadella, Jordi; Lavagno, Luciano; Lazarescu, Mihai T.. - ELETTRONICO. - (2019), pp. 1-6. (Intervento presentato al convegno Design Automation Conference 2019 tenutosi a Las Vegas, NV (USA) nel 2-6 giugno 2019) [10.1145/3316781.3317821].
Exact and Heuristic Allocation of Multi-kernel Applications to Multi-FPGA Platforms
Shan, Junnan;Casu, Mario R.;Lavagno, Luciano;Lazarescu, Mihai T.
2019
Abstract
FPGA-based accelerators demonstrated high energy efficiency compared to GPUs and CPUs. However, single FPGA designs may not achieve sufficient task parallelism. In this work, we optimize the mapping of high-performance multi-kernel applications, like Convolutional Neural Networks, to multi-FPGA platforms. First, we formulate the system level optimization problem, choosing within a huge design space the parallelism and number of compute units for each kernel in the pipeline. Then we solve it using a combination of Geometric Programming, producing the optimum performance solution given resource and DRAM bandwidth constraints, and a heuristic allocator of the compute units on the FPGA cluster.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											dac19.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
									
									
									
									
										
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
									
									
										Dimensione
										820.97 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								820.97 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2740832
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
