Single stage bladed-disks are fundamental bricks of the rotating parts of a turbomachine. Although made of nominally identical sectors, the presence of imperfections or misalignment produces a large amplification of the forced response. Furthermore, due to their high modal density, friction dampers must be designed to mitigate resonance stresses, since a perfect detuning of the resonances from the excitation forces is impossible. Blade-root joints in these structures can provide the much-desired damping but the contact between the disk slot platform and blade-root lobes is characterized by uncertainty due to the actual locking position and machining tolerances. The cases of two simple beams and a bladed-disk test rig of an array of blades with dovetail root joints are studied to identify contact parameters. A dynamic Lagrange multiplier frequency based sub-structuring (LM-FBS) method is applied in a hybrid manner (experimental and numerical frequency response functions) to identify a parameter associated to each contact by mounting only one blade at a time. A sensitivity analysis is performed that will provide the basis for future work on non-linear frequency response prediction.
Substructuring for Contact Parameters Identification in Bladed-disks / Saeed, Zeeshan; Firrone, CHRISTIAN MARIA; Berruti, TERESA MARIA. - ELETTRONICO. - 1(2019), pp. 1-12. ((Intervento presentato al convegno RASD 2019.
Titolo: | Substructuring for Contact Parameters Identification in Bladed-disks |
Autori: | |
Data di pubblicazione: | 2019 |
Serie: | |
Abstract: | Single stage bladed-disks are fundamental bricks of the rotating parts of a turbomachine. Althoug...h made of nominally identical sectors, the presence of imperfections or misalignment produces a large amplification of the forced response. Furthermore, due to their high modal density, friction dampers must be designed to mitigate resonance stresses, since a perfect detuning of the resonances from the excitation forces is impossible. Blade-root joints in these structures can provide the much-desired damping but the contact between the disk slot platform and blade-root lobes is characterized by uncertainty due to the actual locking position and machining tolerances. The cases of two simple beams and a bladed-disk test rig of an array of blades with dovetail root joints are studied to identify contact parameters. A dynamic Lagrange multiplier frequency based sub-structuring (LM-FBS) method is applied in a hybrid manner (experimental and numerical frequency response functions) to identify a parameter associated to each contact by mounting only one blade at a time. A sensitivity analysis is performed that will provide the basis for future work on non-linear frequency response prediction. |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Post-print.pdf | Post Print | 2a Post-print versione editoriale / Version of Record | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2735954