Nowadays, an exponential growth in biological data has been recorded, including both structured and unstructured data. One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured textual corpora to effectively support the decision making process. Since the emergence of topic modelling, new and interesting approaches to compactly represent the content of a document collection have been proposed. However, the effective exploitation of the proposed strategies requires a lot of expertise. This paper presents a new scalable and exploratory data visualisation engine, named ACE-HEALTH (AutomatiC Exploration of textual collections for HEALTH-care), whose target is to easily analyse medical document collections through the Latent Dirichlet Allocation. To streamline the analytics process and enhance the effectiveness of data and knowledge exploration, a variety of data visualisation techniques have been integrated in the engine to provide navigable informative dashboards without requiring any a-priori knowledge on the analytics techniques. Preliminary results obtained on a real PubMed collection show the effectiveness of ACE-HEALTH in correctly capturing the high-level overview of textual medical collections through innovative visualisation techniques.

Towards automated visualisation of scientic literature / DI CORSO, Evelina; Proto, Stefano; Cerquitelli, Tania; Chiusano, SILVIA ANNA. - STAMPA. - (2019), pp. 28-36. (Intervento presentato al convegno 23rd European Conference on Advances in Databases and Information Systems tenutosi a Bled (Slovenia) nel September, 8-11, 2019) [10.1007/978-3-030-30278-8_4].

Towards automated visualisation of scientic literature

Evelina Di Corso;Tania Cerquitelli;Silvia Chiusano
2019

Abstract

Nowadays, an exponential growth in biological data has been recorded, including both structured and unstructured data. One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured textual corpora to effectively support the decision making process. Since the emergence of topic modelling, new and interesting approaches to compactly represent the content of a document collection have been proposed. However, the effective exploitation of the proposed strategies requires a lot of expertise. This paper presents a new scalable and exploratory data visualisation engine, named ACE-HEALTH (AutomatiC Exploration of textual collections for HEALTH-care), whose target is to easily analyse medical document collections through the Latent Dirichlet Allocation. To streamline the analytics process and enhance the effectiveness of data and knowledge exploration, a variety of data visualisation techniques have been integrated in the engine to provide navigable informative dashboards without requiring any a-priori knowledge on the analytics techniques. Preliminary results obtained on a real PubMed collection show the effectiveness of ACE-HEALTH in correctly capturing the high-level overview of textual medical collections through innovative visualisation techniques.
2019
978-3-030-30277-1
File in questo prodotto:
File Dimensione Formato  
ADBIS2019_cameraReady.pdf

Open Access dal 02/09/2020

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2734572