In common distributed sensing scenarios, a number of local wireless sensor networks perform sets of acquisitions that must be sent to a central collector which may be far from the measurement fields. Hence, readings from individual nodes may reach their destination by exploiting both local and long-range transmission capabilities. The compressed sensing (CS) paradigm may help finding a convenient mix of the two options, especially if it follows the rakeness-based design flow that has been recently introduced. CS is exploited by identifying local hubs that aggregate many sensor readings in a smaller number of quantities that are then transmitted to the central collector. We here show that, depending on the relative cost of local versus long-range transmission, carefully administering the choice of the hubs, the breadth of the neighborhood from which they collect readings, as well as the coefficients with which those readings a linearly aggregated, one may significantly reduce the energy needed to sample the field. Simulations indicate that savings may be over 50% for values of the parameters modeling nowadays local and long-range transmission technologies.

Rakeness-based compressed sensing and hub spreading to administer short/long-range communication tradeoff in IoT Settings / Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - STAMPA. - 5:3(2018), pp. 2220-2233. [10.1109/JIOT.2018.2828647]

Rakeness-based compressed sensing and hub spreading to administer short/long-range communication tradeoff in IoT Settings

Pareschi, Fabio;Setti, Gianluca
2018

Abstract

In common distributed sensing scenarios, a number of local wireless sensor networks perform sets of acquisitions that must be sent to a central collector which may be far from the measurement fields. Hence, readings from individual nodes may reach their destination by exploiting both local and long-range transmission capabilities. The compressed sensing (CS) paradigm may help finding a convenient mix of the two options, especially if it follows the rakeness-based design flow that has been recently introduced. CS is exploited by identifying local hubs that aggregate many sensor readings in a smaller number of quantities that are then transmitted to the central collector. We here show that, depending on the relative cost of local versus long-range transmission, carefully administering the choice of the hubs, the breadth of the neighborhood from which they collect readings, as well as the coefficients with which those readings a linearly aggregated, one may significantly reduce the energy needed to sample the field. Simulations indicate that savings may be over 50% for values of the parameters modeling nowadays local and long-range transmission technologies.
File in questo prodotto:
File Dimensione Formato  
08341492.pdf

non disponibili

Descrizione: Editorial Version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
JIOT2828647-pp.pdf

accesso aperto

Descrizione: Author version of the Paper
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2728414