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Rakeness-based Compressed Sensing and Hub
Spreading to Administer Short/Long Range

Communication Tradeoff in IoT settings
Mauro Mangia, Fabio Pareschi, Riccardo Rovatti, Gianluca Setti

Abstract—In common distributed sensing scenarios, a number
of local Wireless Sensor Networks perform sets of acquisitions
that must be sent to a central collector which may be far from
the measurement fields. Hence, readings from individual nodes
may reach their destination by exploiting both local and long-
range transmission capabilities. The Compressed Sensing (CS)
paradigm may help finding a convenient mix of the two options,
especially if it follows the rakeness-based design flow that has
been recently introduced.

CS is exploited by identifying local hubs that aggregate many
sensor readings in a smaller number of quantities that are then
transmitted to the central collector.

We here show that, depending on the relative cost of local ver-
sus long-range transmission, carefully administering the choice of
the hubs, the breadth of the neighborhood from which they collect
readings, as well as the coefficients with which those readings
a linearly aggregated, one may significantly reduce the energy
needed to sample the field.

Simulations indicate that savings may be over 50% for values
of the parameters modeling nowadays local and long-range
transmission technologies.

Index Terms—Internet of Things, Wireless Sensor Networks,
Compressed Sensing, Rakeness, Signals on graphs

I. INTRODUCTION

As the next steps in the technology development see an
increasing interaction between information processing and the
physical world, the deployment and the very same concept of
sensing is changing rapidly [1]–[4]. The word sensor no longer
indicates only the device translating some physical quantity
into an electrical signal, neither it limits to the conditioning
and digitalization of such a signal to make it compatible with
digital processing.

In order to fit into the grand view of an information
processing structure overlying and improving physical reality,
sensors must be able to play their role in a system in which
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Fig. 1. A grand view of systems made of local Wireless Sensor Networks
that communicate their readings to a geographically separated collector.

processing and communication have to be administered at
many different levels in order to reach a globally optimized
use of resources. This is surely true when, for example,
many sensors are deployed over an area and must report their
readings to a remote collector. A certain amount of processing
within the local sensor network may benefit the long-range
transmission needed to reach the remote collector.

Though the paper deals with this issue from a methodolog-
ical point of view, Figure 1 gives an intuitive representation
of a structures in which sensors belong to a Wireless Sensor
Network (WSN) whose nodes have local communication ca-
pabilities and finally deliver their acquisitions to the collector
by means of long range transmissions in some Wide Area
Network (WAN).

In this paper we investigate the trade-off between local
and wide-area communication by arranging sensor nodes
in neighborhoods, each of them controlled by a hub that
aggregates data by means of a Compressed Sensing-based
(CS) coding technique before communicating with the remote
collector. While the concept of data aggregation is well studied
[5], the application of CS-based techniques is relatively new
in the literature [6]. With respect to previous proposals we
here introduce three notable novelties: iq the application of
the CS optimization technique known as rakeness [7], [8]
to improve performance in terms of data compression; iiq
a modified Dijkstra’s algorithm to define hub neighborhoods
under the assumption that not more than a predefined hops
budget is used to transmit all sensor readings to the hub using
a multi-hop protocol; iiiq the algorithm according to which
we select the hubs, that is specifically designed to cope with
the proposed neighborhoods construction. Simulations show
that the energy required to locally collect sensor readings and
transmit compressed data to the remote collector is strongly
reduced with respect to other CS-based approaches proposed
in the literature.
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TABLE I
ENERGY PER BIT USED IN SOME SHORT- AND LONG-RANGE

COMMUNICATION PROTOCOLS. VALUES REFER TO THE MAXIMUM
OUTPUT POWER.

Range Technology Ebit [nJ/bit] Ref.

short IEEE 802.15.4 109 [10]
BLE 27 [11]
WiFi 18 [12]

long LoRa 39600 [13]
GSM 17757 [14]

To describe and test the proposed scheme, the paper is
organized as follows. In Section II we introduce the motivation
of this work. We also present related works on CS-based data
gathering techniques and briefly introduce some mathematical
concepts used in the paper. Section III and IV introduce
the proposed aggregation technique and the hub selection
algorithms, respectively. Section V sketches the principles of
classical and rakeness-based CS that are applied to locally
collected data. Section VI describes a general framework that
allows to simultaneously model the estimation accuracy of the
scheme as well as its needs in terms of energy employed
in transmissions. It also proposes a number of options for
the connectivity graph and the sparsity basis that characterize
a system and are worth testing to observe the effect of
the degrees of freedom on the overall performance. Finally,
Section VII performs a thorough numerical assessment of the
configurations discussed in the previous section and shows
how the overall method may be used to save resources from
a global point of view.

II. MOTIVATION AND RELATED WORK

The trade-off between local communication and wide-area
transmission in the scenario of Figure 1 is investigated under
the commonly adopted assumption [9] that a number of
sensor nodes, all equal to each other, with limited processing
power and highly constrained energy resources, are randomly
deployed in a sensing area. The investigation is motivated by
the fact that, assuming that the ratio between the distance
covered by long-range and short-range communications is
about 102 (e.g., tens of meters vs. kilometers) and that no
particular directivity can be provided by sensor nodes anten-
nas, according to the free space propagation model one expects
that the ratio between entailed powers is of the order of 104.

This theoretical prediction is matched by actual consump-
tion of nowadays implementations. Table I compares the
transmission efficiency in terms of Joule per bit of some
communication protocols commonly used in the most common
machine-to-machine (M2M) communication scenarios [15].
The ratio ε between short- and long-range efficiencies varies
in a wide range, depending on the considered protocols. Yet,
we focus on the two corner cases identified by the table, that
we approximate in ε � 5 � 10�4 and ε � 5 � 10�3. Values in
this order of magnitude are more than enough to justify the
introduction of substantial local data exchange to provide data
aggregation and compression before long-range transmission
is attempted.

The problem of data aggregation in WSN has been widely
investigated in the Literature [5], and has been recently im-
proved by the adoption of CS-based local processing tech-
niques, mainly due to the low cost in terms of complexity.
Differently from classic compression mechanism based on
some domain transformation such as Fourier or Wavelet, CS
is based on simple linear combinations of input samples.
This approach lowers the additional cost in terms of required
energy, thus making power budget typically dominated by
local communication cost [8], [16]–[19]

Authors of [20] introduce RACS (Random Access Com-
pressed Sensing) as a scheme that, thanks to a strong under-
sampling of nodes in underwater sensor networks, can improve
energy and bandwidth efficiency. A similar approach has been
proposed in [21] and addressed as STCDG (Spatio-Temporal
Compressive Data Collection). The results of all these studies
reveal that CS represents a good alternative to solutions based
on standard compression schemes.

Yet, in many of the works that can be found in the Literature,
CS is applied, either in centralized or in a distributed way, in
sensor networks adopting a multi-hop scheme: sensor readings
are propagated through the nodes before reaching the collector
(typically indicated as sink). The advantage is that the energy
required for propagating a reading increases linearly with
the number of hops, that can be assumed proportional to
distance, while in the open space model power should increase
quadratically with distance. These works aim is to improve the
lifetime of the WSN while ensuring a sufficient performance
in terms of overall data reconstruction. This is the case of
[6] that, given a multi-hop WSN, highlights the potential of
applying CS to the data aggregation problem. In [22] authors
propose CS as a mean to reduce communication cost by
reducing the number of transmissions in large-scale WSNs.
To this aim, they apply CS both in the spatial and also in the
spatial-temporal domain. Authors of [23] focus on the trade-off
between the energy spent for transmission and for compression
using data sets gathered by a real-life deployment. In [24] the
authors compare the results of a time-domain based CS scheme
in terms of energetic costs with that achievable by conventional
schemes. In [25] authors are able to write a joint optimization
problem that allows to collect data at the sink, minimizing
both the number of transmissions (i.e., the required energy)
and the latency. Authors of [26] investigates performance, in
terms of both energy and latency, of a proposed coding scheme
based on CS where the linear combinations are computed in
a distributed way.

Yet, all the aforementioned works assume that there is a
single data collector (sink) located not far from the WSN.
The scenario of Figure 1 requires a slightly different network
modeling, similar to that envisioned in [15] for the future M2M
growth in the IoT scenario with a heterogeneous wireless con-
nectivity capability. To cope with this scenario, many works
consider clustering, i.e. nodes are assigned to non-overlapping
clusters, each of them controlled by a hub collecting their
readings (possibly by means of a multi-hop protocol) and
providing long-range communication capability.

A similar network model appeared in [9]. Authors consider
microsensor networks where the data collector is located far
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from the nodes, and proposed a dynamic and adaptive low-
energy clustering approach known as LEACH. Yet, a very
few works are considering a similar model within the CS
framework. In [27] the clustering technique is considered, and
the optimal number of clusters that provides the minimum
power consumption is investigated. However, data collector is
assumed to be at the center or immediately outside the sensing
area, but not far from it thus avoiding any trade-off between
local and long-range communications. Authors of [28] propose
an energy-balanced data gathering and aggregating scheme
with an adaptive approach very similar to LEACH. Also
here, the collector is assumed to be inside the sensing area.
Finally, [29] investigates a clustering approach with a CS-
based compression that finds the optimal number of clusters
reducing the total amount of local hops needed to first collect
data inter-cluster (by multi-hop protocol) and then transmit
compressed data from each cluster to a main collector. Yet,
similarly to previous works, the collector is located at the edge
of the sensing area.

The scenario considered here is more similar to that in [9],
where nodes communicate with a multi-hop protocol to some
hubs. In our work hubs apply CS-base compression to readings
before sending them to the collector. The main innovative
aspects with respect to the aforementioned literature can be
summarized as follows.

 We aim at reducing the joint energy required by both local
WSN communication and WAN communication, while
almost all of the cited works aim at reducing the WSN
energy only. This is reflected into an improvement in the
network life assuming a proper hub rotation policy [9].

 We introduce a modified Dijkstra’s algorithm for defining
hub neighborhoods, and the hop budget H as a very
simple design parameter to set the neighborhood size.
This helps in the energy consumption design of the WSN,
whose is directly related to H .

 We relax the definition of cluster introducing the neigh-
borhood. It is possible for a node to not belong to any
neighborhood, but also to belong to more than one. A CS
system can easily cope with this, with beneficial effects
on the performance [19], [30]. Such a situation has never
been considered in the Literature [27]–[29].

 The compression achieved by CS is increased by applying
the recently introduced rakeness-based design [7], [8].

In the following, we rely on some mathematical definitions
and concepts that are briefly summarized here.

A. Sensor nodes deployment
We assume that N sensors numbered from 0 to N � 1

are randomly deployed in the sensing field. At a given time,
each of them acquires its reading xk with k � 0, . . . , N � 1.
Mathematically, we introduce x as the state vector of the
sensing field by arranging readings as x � px0, . . . , xN�1q

J,
where �J stands for vector transposition.

The final goal of the method we propose is to let the
collector compute an estimate x̂ of the original vector x.
Given a desired estimation accuracy depending on x� x̂, the
trade-off between short- and long-range communication may
be administered to reduce the overall energy need.

B. Connectivity graph

We assume that all sensor nodes have the same fixed
transmission power, and consequently a fixed transmission
range [29]. Accordingly, communication capabilities of the
nodes depend on their distance. We model this by introducing
an undirected graph with a vertex at each node and the N�N
adjacency matrix C such that Cj,k � 1 if the k-th vertex/node
can communicate with the j-th vertex/node and Cj,k � 0 if
this cannot happen.

This very simple model of connectivity derives from the
need of keeping the implementation of each node as simple
as possible thus avoiding, for example, variable power trans-
mission that would be better modeled by a complete weighted
graph with communication costs attached to each edge.

In our setting, when feasible, communication happens by
equal cost hops between nodes.

C. Second-order signal statistics

One of the priors that is often available when designing ac-
quisition systems is how the energy of the signal is distributed
along its components.

This is accounted for by the second order statistics of the
vector x, i.e., by its N �N correlation matrix X � ErxxJs.
Signals with independent components feature a trivial corre-
lation matrix made of individual variances Xk,k � Erx2ks and
products of the means Xj,k � ErxjsErxks for j � k.

Yet, real-world quantities usually feature some form of
correlation between components and the resulting non-trivial
X can be used as a prior to optimize acquisition of the vector
x just like power-spectrum can be used to properly design the
acquisition of a time domain signal.

D. Compressibility and sparsity

Real-world signals, especially high-dimensional ones, usu-
ally exhibit redundancy and thus are compressible. For vectors,
the simplest form of compressibility is with respect to a
suitable orthonormal basis and can be formalized arranging
the vectors of such a basis in the matrix D, and saying that if
the signal is expressed as x � Dξ, then the coefficient vector
ξ P RN has few non-negligible components that are the only
ones that would be needed to reconstruct the original signal.

An extreme form of compressibility is κ-sparsity, in which
one knows that not more than κ   N components of ξ are
non-null. The sparsity basis D is clearly application-dependent
and real world time-domain signals are usually found to
be compressible or even sparse along some suitably defined
Fourier-like or wavelet-like basis.

Our vector x does not contain time-domain samples of
a signal. Yet, relationships may exists between the nodes,
different from belonging to a sequence ordered in time, that
imply the existence of a sparsity basis.

Some authors have recently suggested [6], [31]–[33] that
such relationships may be modeled by laying down a further
graphs connecting the vertices/nodes with edges whose weight
accounts for the link between the corresponding extrema. In
our case, this would amount to a further N � N matrix G
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such that Gj,k is the weight of the edge connecting the k-th
vertex with the j-th vertex. Assuming that such a matrix G
can be diagonalized as G � DΛD�1, with D a non-singular
matrix and Λ the diagonal matrix containing the eigenvalues
of G, evidence has been put forward that some signals (often
indicated as signals on graphs) are compressible or sparse with
respect to D.

As an intuitive justification for such a prior, note that the
acquisition of time-domain signals can be modeled by asso-
ciating each time instant to a vertex and setting Gk�1,k � 1
for each k � 0, . . . , N � 2 to express their ordering. If we
further set G0,n�1 � 1 and Gj,k � 0 in all other cases, the
corresponding xk can be thought as samples of a periodic
time-domain waveform.

In this case, it is easy to see that if G � DΛD�1 we have
Dj,k � e�2πi jk{n for j, k � 0, . . . , n � 1, i.e., D contains
the Fourier basis. Being compressible or sparse with respect
to D is therefore equivalent of being compressible or sparse
with respect to what can be taken as the generalization of the
Fourier basis for graph-supported signals [34], [35].

E. Compressed sensing
Compressed Sensing (CS) is a technique leveraging the

sparsity prior to reduce the amount of scalars that needs to
be used to identify a signal. It has been proven effective when
dealing with structured signals like time-domain waveforms
or images and has been recently proposed for the acquisition
of graph-supported signals [6].

The fundamental idea is that, instead of acquiring all the val-
ues xk for k � 0, . . . , N �1, one may consider only a certain
number of their linear combinations yj �

°N�1
k�0 Aj,kxk � ηj

where ηj is a noise component, for j � 0, . . . ,m�1 and with
m   N , called measurements.

Since m   N , if the measurements and the disturbances are
arranged in the vectors y and η, and the linear combination
coefficients in the matrix A, then the relationship y � Ax� η
does not, in general, allow a straightforward estimation of x.
Yet, if x is known to be sparse with respect to the basis D,
then y � ADξ � η, where at most κ components of ξ are
known to be non-zero. A number of recent theoretical and
algorithmic developments guarantees that, exploiting this prior,
x can be effectively estimated with some known bounds on
the estimation error depending on η and on specific properties
of the matrix A.

Beyond theoretical guarantees, it is fair to say that most of
the practical interest in CS comes from few key facts:

 the actual performance of estimation algorithms largely
outperforms the theoretical bounds allowing an effective
recovery of x from a small number of measurements, i.e.,
usually m ! N [36];

 the mathematical conditions on A can be matched by
using random matrices and, although the formal results
depend on specific matrix distributions [37], in practice a
wide class of random matrices allows for effective signal
recovery [38]–[41];

 leveraging on this, it is possible to substantially improve
acquisition performance by adapting the statistical distri-
bution of A to that of the signal x, in particular to its

second-order statistics in X . Once the distribution of A
is chosen, a single instance can be drawn and used for
sensing. This is what rakeness-based design of A does
[7], [36];

 the amount of processing entailed by CS is negligible as
it amounts only to linear combinations [18], [19], [42].
This perfectly suits the low resource budget of sensor
nodes.

All the above can be combined in a data collection scheme
that uses inter-node communications over the connectivity
graph to gather subsets of the readings and computes the
corresponding linear combinations yj by means of suitable co-
efficients, possibly designed with a rakeness-based approach to
CS [8]. The measurements, that come in smaller number with
respect to the sensor readings, are the quantities transmitted
to the central collector for reconstructing x̂.

This blending of local communication and CS is a distinc-
tive and useful improvement of what is classically proposed for
the acquisition of graph-supported signals where A is made of
m rows of the N �N identity matrix [33] thus implementing
a subsampling instead of a true, possibly optimized, linear
combination.

III. COLLECTING READINGS BY LOCAL COMMUNICATION

Some sensing nodes are promoted to the role of hub, and
collect readings from nearby nodes (their neighborhood) pro-
viding linear combinations of them to the common collector.

Neighborhood design should be accurately investigated, as
their size is critical for system performance [27], [29]. Given
a hub u, we indicate with W the associated neighborhood and
with n its size, i.e., n � |W |.

In this work, we set W as the largest set of nodes whose
readings can be transferred to u within a hop budget H , i.e.,
within a number of short-range transmissions not higher than
H . There is a twofold reason that suggests that H should be
considered as an important design parameter and that its value
should be limited by some threshold.

 The overall energy for transferring all readings to the
hub is directly proportional to H . Setting H is equivalent
to set an upper bound for all short-range transmissions
within each neighborhood.

 Also the time for collecting readings of all nodes in W
is regulated by H , as it will be detailed in the following.

More formally, the connectivity matrix C allows to define a
distance hpj, kq between the k-th and the j-th node, that is the
minimum number of hops needed to reach the latter from the
former. Said V � t0, . . . , N�1u the set of nodes/vertices, each
hub u selects a subset W � V such that

°
wPW hpw, uq ¤ H .

This can be done by modifying the classical Dijkstra algo-
rithm for the shortest path to a given root u so that it adds a
new vertex to the tree only if there are enough hops left to
go from that vertex to the root. Algorithm 1 formalizes this
in a procedure that accepts the adjacency matrix C, the hub
u, and the budget H to give the set W of vertices/nodes that
communicate their readings to u. Note that at line 8, possible
ties are resolved by randomly selecting a node w among those
that exhibit the same minimum distance dmin.
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Algorithm 1 Dijkstra’s algorithm modified to spend not more
than H hops

1: procedure BUDGETDIJKSTRA(C, u,H)
2: V Ð t0, . . . , N � 1u
3: W ÐH
4: dÐ p8, . . . ,8qJ

5: dpuq Ð 0
6: while V � H do
7: dmin Ð minvPV dpvq
8: w Ð randompickptv P V |dpvq � dminuq
9: V Ð V ztwu

10: foreach z|Cz,w � 1 do
11: dpzq Ð mintdpzq, dmin � 1u
12: end foreach
13: if H ¥ dmin then
14: W ÐW Y twu
15: H Ð H � dmin

16: else
17: exit while
18: end if
19: end while
20: return W
21: end procedure 1

u

w1

w4

w2

w5

w6

w3

w7
w8

Fig. 2. The application of Algorithm 1 for H � 16.

Figure 2 exemplifies the procedure for H � 16. Black dots
represent nodes, and edges are drawn between pairs of vertices
j, k such that Cj,k � 1, the largest blue disk represents the
hub u and is inserted in W by the first execution of the while
loop.

The nodes w1, w2, and w3 can reach u with just one hop
along the solid blue edges and they are added to W by the
three subsequent iterations of the while loop. This uses 3 out
of the H � 16 in the budget.

The nodes w4, w5, w6, and w7 can reach u by transmitting
their reading to one of the nodes just added to W along the
dashed blue edges, and thus use 2 hops each. They are added
to W and use a total of 8 hops out of the H � 16 � 3 � 13
in the budget.

This leaves us with only H � 16 � 3 � 8 � 5 hops in the
budget. The nodes with the shortest path to u that are not yet
in W , need 3 hops to reach the hub. Hence, only one of them
may be added to W . In this case w8 is chosen, which can
communicate its reading to w7 along the dotted blue edge and

thus to u by means of a further hop through w3.

In general, H is less than what is needed to collect all
the readings in the network and Algorithm 1 limits the nodes
contributing to a measurement to those in a neighborhood of
the hub.

To have an idea on how large such a neighborhood can
be, let us refer to a typical node arrangement that we will
use in all our simulations. The N nodes are deployed at
random in a square area with a normalized unit side. Then
a transmission range r is defined and any pair of nodes
with an Euclidean distance not larger than r gives rise to an
edge in the connectivity graph. We will consider N � 128
and r P t0.125, 0.15, 0.175u to test scenarios with increasing
connectivity.

It is intuitive that H sets the number of nodes n in
a neighborhood. The experimentally obtained average value
Erns as a function of H is plotted in Figure 3-(a) for three
different values of r. Figures 3-(b), (c), and (d) show typical
neighborhoods corresponding to H � 32 for graphs with
increasing connectivity. Note how, as r increases, the number
of nodes that can be reached using the same hop budget
increases.

The value of H also sets the neighborhood latency, i.e.
the time required by the hub to gather all n associated
readings, that is another crucial parameter when considering
a multi-hop approach [25]. We estimate this time under the
following assumption: iq the collection procedure must avoid
data collisions; iiq at each time step a node can either transmit
or receive a piece of data (e.g., a single antenna or RF amplifier
is shared for transmission and reception). In this case latency
is in the range rn� 1, 2n� 3s.

To see why, let us refer to Figure 2. Only nodes w1, w2

and w3 can directly transmit to u. Readings at w4, w5, w6,
w7 and w8 need to be passed to a node one-step-closer to the
hub, and can reach the hub only through w1, w2 or w3. In
other words, we can identify 3 subtrees, indicated with S1, S2

and S3, whose cardinality is s1, s2 and s3, respectively, and
whose root node (i.e., the node that can communicate with
u) is w1, w2 and w3, respectively. A generic subtree Si can
transfer all its si readings to u in 2si�1 time steps. The proof
by construction is shown in Figure 4, and it is based on the
observation that the bottleneck is given by the root node: it
has to transmit si pieces of data to u, and receive si�1 pieces
of data from other nodes, with an overall number 2si � 1 of
data exchanges. Hence, the total number of time steps for u to
collect all readings is

°
ip2si � 1q where i spans the subtree

covering on the same hub, and ranges from n�1 (when si � 1,
@i � 1, . . . , n�1) to 2n�3 (when only the subtree S1 exists,
with s1 � n� 1).

From Figure 3-(a) we get that as H increases each hub has
the possibility of accumulating a larger number of readings and
thus is presumably able to compute measurements containing
a larger amount of information on the original signal. Yet, as
H increases, both the energy and the time needed to collect
readings increases so that too large values of H are to be
avoided.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2018.2828647

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6
1

50 100 150 200 250

20

40

60

80

H

E
[n
]

r = 0.125
r = 0.15
r = 0.175

(a)

1

(b) r = 0.125, n = 26

1

(c) r = 0.15, n = 28

1

(d) r = 0.175, n = 31
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Fig. 4. A sketch of the method giving the number of time steps required
to send all readings of a subtree with si nodes to the hub. Bold blue edges
stand for an active data transmission, nodes in bold are those involved in the
transmission process; empty nodes have already transmitted their readings and
are not involved anymore in the data propagation process. Starting from its
own reading, the root node w1 sends to the hub u all readings of the subtree,
alternating a step with a data transmission and a step with a data reception.
Being si the number of transmission steps, and si � 1 of reception steps,
the total number of steps is 2si � 1. In the figure, si � 7, so 13 steps are
required, from (a) to (m).

IV. HUB SPREADING ALGORITHMS

Among the N sensing nodes, M ¡ 1 of them are promoted
to the role of hub.

A first, straightforward option for hub selection is the
random one, that chooses any subset of M out of N nodes
with equal probability to be used as hubs. This approach is
common in the literature [9], [27] as it ensures a satisfactory
hub rotation policy.

Yet, a pure random hub selection combined with the pro-
posed modified Dijkstra’s algorithm does not prevent overlap-
ping neighborhoods, and does not even ensures full coverage
of the sensing field.

Indeed, one of the main advantage of the CS is its capability
to take advantage from substantially overlapping neighbor-
hoods [30] and also to cope with uncovered sensors. However,
since both the number of neighborhoods M and the hop budget
H must be kept as low as possible to save communication
resources, any avoidable overlap may actually be a waste if
the same resources could have been spent to incorporate the
reading of uncovered sensors into a measurement.

To treat the issue more formally, once that the neighbor-
hoods W0, . . . ,WM�1 of the M hubs are decided one may
define

γ � max
k

|tWj |k PWj , j � 0, . . . ,M � 1u| ,

i.e., the maximum number of times that any vertex appears in
a neighborhood.

Minimizing γ is a covering-type problem that may be
extremely hard to solve. Yet, we may hope to reduce it by
a simple heuristic. In particular we propose to select the hub
one after the other randomly from a pool U that is initialized
with all the available nodes and from which we drop the
nodes already participating in a neighborhood. If U ends
up containing no nodes then it is reset to include all the
nodes with the exception of those already chosen as hubs.
The procedure is formalized in Algorithm 2 to accept the
connectivity matrix C, the number of hubs M and the hop
budget associated to each neighborhood H to yield a set of
hubs.

Though very simple, such an heuristic is able to reduce
γ as reported in Figure 5-(a) where we plot the average γ
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Algorithm 2 An heuristic procedure used to select the M hubs
1: procedure HUBSELECT(C,H)
2: V Ð t0, . . . , N � 1u
3: U ÐH
4: do M times
5: uÐ randompickpV q
6: U Ð U Y tuu
7: W Ð BUDGETDIJKSTRApC, u,Hq
8: V Ð V zW
9: if V � H then

10: V Ð t0, . . . , N � 1uzU
11: end if
12: end do
13: return U
14: end procedure

over a large number of randomly drawn geometric connectivity
graphs with N � 128 and r � 0.15 when M � 32 hubs
are selected and as a function of the hop budget H available
to build each neighborhood. Figure 5-(b) and (c) show 6 of
neighborhoods as they are placed by the two methods that in
the following we will name as rnd-γ and low-γ.

V. CLASSICAL AND RAKENESS-BASED CS ON COLLECTED
READINGS

Let us now concentrate on the hub u with its neighborhood
Wu that contains nu � |Wu| nodes. Once that readings are
collected, the hub uses CS (see Section II-E) to processes them
and produce a number mu of linear combinations that enter
the measurements vector y

yuj �
nu�1¸
k�0

Auj,kxk (1)

for j � 0, . . . ,mu � 1 for some coefficients Auj,k. The
coefficients are such that Auj,k � 0 if k R Wu to model the
fact the the readings combined in yuj are only those collected
by the hub u.

According to well-known guarantees on CS acquisition, the
nu non-zeros in the mu rows of Au can be taken as instances
of zero-mean and unit-variance Gaussian random variables,
each row of Au being independent of the other rows. Classical
CS assumes independence also between the different columns
of Au.

Yet, whenever the prior X on the second-order statistic of
the signal is available, it has been proved that [7], [8], [36],
[43], [44] this can be exploited by resorting to rakeness-based
design. The main idea is to adapt the statistic of each of the
rows a of Au to increase the ability of the resulting projection
of raking energy from the signal itself.

More formally, let us indicate with �|u an indexed quantity
when its indexes are limited to the integers contained in Wu,
and with a|u a vector corresponding to a generic row of
Au. With this, the generic measurement is the scalar product
between the generic row of Au and the signal x, a scalar
product that can be limited to the non-zero components to yield

a|u
J
x|u. The average energy of such a generic measurement

is

E
�
a|u

J
x|ux|u

J
a|u
�
�

tr
�
E
�
a|ua|u

J
�
E
�
x|ux|u

J
�	

� tr
�
A|uX |u

	
where A|u � Era|ua|u

J
s is the correlation matrix of the non-

zeros in the row.
Hence, the energy that is raked from the signal can be

increased by solving an optimization problem of the kind

maxA|u tr
�
A|uX |u

	
(2)

s.t. A|u
© 0 (3)

s.t. A|u � A|uJ (4)

s.t. tr
�
A|u

	
� nu (5)

s.t. tr
�
A|u2

	
¤ ζ pnuq

2 (6)

where (3) and (4) ensure that A|u is a symmetric and positive-
semidefinite matrix, i.e., a proper correlation matrix, and (5)
sets the energy of the row proportional to the number of
coefficients nu. As far as (6) is concerned, note that, due to
the random nature of the signal, observing only its maximum-
energy component (i.e., its principal component) is not enough
to reconstruct it, and energy maximization should be tempered
by the need to span the whole signal space. This is obtained
by suitably bounding the sum of the squares of the eigenvalues
of A|u to prevent them to concentrate only on the principal
components [7], [8]. In its simplest form, (2)-(6) has the
analytical solution

A|u �
1

2

�
nuX |u

tr
�
X |u

� � Inu

�
(7)

where Inu is the nu � nu matrix and ζ was set as suggested
in [8].

Hence, as a second option, instead of drawing the coeffi-
cients as random independent normals, for every measurement
yuj depending on the vertices in Wu we generate random
jointly-Gaussian coefficients with correlation (7).

VI. SETTING FOR PERFORMANCE ASSESSMENT

The effectiveness of the techniques described above has
been tested by Montecarlo simulations in a number of con-
figurations. In all cases N � 128.

As anticipated, the connectivity graph is a geometric graph
in which nodes correspond to points randomly chosen within
a unit-length square according to a uniform distribution. A
connection between two nodes is established whenever the two
corresponding points have a distance not larger than r, with
r P t0.125, 0.15, 0.175u. This allows to test different levels of
connectivity since the larger the r, the higher the number of
potential connections between nodes that may be exploited.
The adjacency matrix of the connectivity graph is C and is
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TABLE II
OPTIONS AND PARAMETERS CONSIDERED IN THE SIMULATIONS.

parameter meaning values

N
dimensionality of
the signal 128

κ

number of
non-zero
components of x
along D

t6, 12u

D sparsity basis of x

$''''&
''''%

FrCs Fourier of connectivity
graph

FrC̃s Fourier of perturbed
connectivity graph

N Orthonormalized
random normal basis

ISNR
intrinsic
signal-to-noise
ratio of x

60 dB

r

maximum
connection
distance between
nodes uniformly
distributed in
r0, 1s2

t0.125, 0.15, 0.175u

M number of hubs
t4, 5, 6, 7, 8, 10, 12, 14, 16,

20, 24, 28, 32, 40, 48, 56, 64u

H

maximum number
of node-to-node
communications to
collect readings at
each hub

t32, 40, 48, 56, 64, 80, 96,
112, 128, 160, 192, 224, 256u

hub selection
#

low-γ selected with the
heuristic in Section III

rnd-γ selected randomly

coefficients for the
computation of the
measurements

$&
%

rnd-CS classical random
coefficients

rak-CS rakeness-based
coefficients

ε

ratio between
energy/bit in local
communication
and energy/bit in
long-range
communication

r5� 10�6, 5� 10�2s

such that Cj,k � 1 whenever the k-th node can communicate
with the j-th node and Cj,k � 0 otherwise.

The connectivity graph regulates the collection
of sensor readings at the M hubs with M P
t4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64u.
Hubs may be selected either randomly among the available
nodes (rnd-γ) or according to the heuristic of Section III
that aims at reducing the overlap between neighborhood
(low-γ).

The local communication budget for each collection is
H P t32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256u.
Clearly, as H increases the number of readings collected by
each hub also increases so that measurements combines a
larger number of entries of the vectors x, intuitively increasing
their information content.

The M hubs are used cyclically to provide the m measure-
ments, i.e., the first M measurement come from different hubs
that are reused to provide the subsequent M , and so on up to
the total m measurements. If m is not a multiple of M not
all the hubs provide the same number of measurements.

Measurements are computed according to (1) by usign
random normal coefficients. We evaluate both the classical
CS case in which coefficients are independent (this option
is labeled rnd-CS) and the rakeness-based option in which
the array of coefficients used for each measurement has an
auto-correlation matrix given by (7) (this option is labeled
rak-CS) .

The signal x is κ sparse with κ P t6, 12u with respect to a
sparsity basis D for which we consider three options.

As a first option, D is the eigenvector basis of the adjacency
matrix of the connectivity graph C. As discussed above this
amounts to say that x is sparse with respect to the Fourier basis
of the connectivity graph. We label this option with FrCs.

To test a configuration in which this situation is only
approximately verified, we also consider a second option that
takes D as the eigenvector basis of a perturbation of C
by means of a Watts-Strogatz-like adjustment that randomly
provides non-local links [45]. More formally, starting from C
each of the initial edges has a probability p of being deleted
and substituted by an edge randomly chosen between those
not already present in the graph. We consider p � 0.2 and
label this option with as FrC̃s.
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As a third option we generate a random basis D by
orthonormalizing an N �N random matrix with independent
normal entries. We label this option as N .

In all cases the readings of the sensor that are processed
correspond to the true signal pertubed by a white Gaussian
noise with an Intrinsic Signal-to-Noise Ratio (ISRN) of 60 dB
to emulate noise and system non-idealities.

The options described above give raise to a total of 15912
configurations. Each of such configurations has a cost associ-
ated to the energy needed to send all the information to the
central collector. Such a cost is made of two contributions. The
contribution due to the local communication is proportional
to the number of hubs and to the hop budged available to
collect the readings at each of them. The contribution due to
long-range communication is proportional to the number of
measurements. Overall the energy needed to transmit all the
information is

Etot � mElong range �mintm,MuHEshort range

where Elong range is the energy needed to transmit a sensor
reading from a node to the central collector and Eshort range is
the energy needed to transmit a sensor reading between two
nodes. As anticipated, we do not take into account the energy
spent in computing the measurements since this is usually
negligible with respect to transmission [18], [19], [42].

A straightforward acquisition scheme would need E0 �
NElong range that may be used to normalize the above cost into

e �
Etot

E0
�
m

N
�

mintm,MuH

N
ε (8)

where ε is the ratio between the energy/bit entailed in a
short-range communication and the energy/bit entailed in a
long-range communication. Clearly, values of e lower than
1 indicate energy saving with respect to the straightforward
approach.

In return for such a cost, the information gathered at the
collector allows to recover the original signal x with a certain
fidelity that varies from instance to instance.

We run extensive Montecarlo simulations to assess the
statistics of such a fidelity, measured as the Reconstruction
Signal-to-Noise Ratio, i.e., considering the original signal x
and the recovered one x̂ to compute

RSNR � 20 log10

�
}x}

}x� x̂}




where signals recovery was performed by [46].
We summarize the performance of a method by analyzing

its Probability of Correct Reconstruction (PCR)

PCR � Pr tRSNR ¥ RSNRminu

that is estimated by simple frequency counts against a min-
imum quality level fixed at RSNRmin � ISNR � 3 dB �
57 dB. PCR acts as a guarantee in the spirit of outage
probabilities of communication systems since, for example,
PCR� 0.95 implies that the required RSNR is obtained at
least 95% of the times.

VII. NUMERICAL EVIDENCE AND DISCUSSION

Equation (8) shows that the energy cost is made of a
compression term m{N that depends on the ability of CS to
express an N -dimensional signal with only m ! N scalars
and of an overhead term εmintm,MuH{N that accounts for
the cost of the local transmissions needed to apply CS itself.

We may show the effectiveness of CS in lowering the first
term by plotting the achievable PCR against the number m
of measurements. This is done in Figure 6 for few significant
configurations that allow to highlight the main trends. Such
trends are maintained in all the cases we tested.

In each plot of Figure 6 dashed tracks correspond to
rnd-CS while solid tracks correspond to rak-CS. As far as
colors are concerned, blue tracks correspond to rnd-γ while
red tracks correspond to low-γ.

Since m on the horizontal axis is the number of measure-
ments, the more to the left a curve, the higher the perfor-
mance. This allows to appreciate that in all cases maximum
performance is given by low-γ and rak-CS systems with
non-negligible advantages over more classical approaches.

Considering Figure 6-(a) as a reference case, the plots in
Figure 6-(c) to (f) show how the performance profile change
when one of the options (highlighted in red) changes.

By comparing Figure 6-(a) with Figure 6-(c) and Figure 6-
(d), one observes that the effectiveness of low-γ is maximum
when M and H are small. In that case, neighborhoods are
small in size and few in number, and their correct admin-
istration brings noteworthy advantages. As either H or M
increases, most of the nodes are able to contribute their
readings to at least one hub almost independently of the hub
selection strategy.

On the contrary, the effectiveness of rak-CS increases with
M and H , since this increases the diversity in the radings that
are combined in the measurements, a diversity that is exploited
by rakeness-based design.

Beyond qualitative considerations, better performance trans-
lates in the need of less resources to obtain the same quality in
signal recovery. To quantify this, we intersect the plots with the
PCR� 0.95 line to find the minimum number of measurements
that is needed to ensure that an RSNR not smaller than 57 dB
is obtained at least 95% of the times.

These values are reported in Figure 6-(b) and are less than
N � 128, thus indicating that the first term in (8) would
be less than 1. Yet, by adopting low-γ and rak-CS one my
hope to make m{N to be not more than 67{128   0.53 and thus,
once payed for the overhead, to reach substantial savings in
e.

To estimate the achievable savings we fix the required
performance level to PCR� 0.95 and scan the design space
pH,Mq for the point that guarantees such a performance while
minimizing (8). This is done for ε P r5 � 10�5, 5 � 10�2s
and for signals that are characterized by different sparsity
levels κ P t6, 12u with respect to different bases D P
tFrCs,FrC̃s,N u. The result is reported in Figure 7, in which
e is plotted against ε. All plots are clipped to e ¤ 1 as larger
values of e imply no saving. The two values ε � 5�10�4 and
ε � 5 � 10�3 corresponding to currently viable technologies
are marked as vertical dotted lines.
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Fig. 6. PCR against m for different example configurations (a)(c)(d)(e)(f). The table reports the minimum number of measurements needed to ensure that
PCR¥ 0.95 (b).

By comparing the plots in that Figure, one notes that κ,
i.e., the intrinsic complexity of the signal, affects energy needs
since e plots are higher in the second row (κ � 12) of Figure 7
with respect to first row (κ � 6).

Rakeness-based CS is always a key player since the gap
between solid (rak-CS) and dashed (rnd-CS) tracks is
always substantial. In more complex cases (κ � 12) the
adoption of rakeness-based CS is the key to make the approach
profitable since standard CS would not yield significant energy
savings.

Moreover, when the relative cost of local communication
(ε) increases, the effectiveness of the methods we propose
decreases since trends tend to rise towards and beyond e � 1.
Yet, as this happens, the need for a careful administration of
local transmission makes hub selection more effective since
the gap between red (low-γ) and blue (rnd-γ) curves
widens.

Hub spreading by means of low-γ substantially affects
savings when time constraint come into play. From Section III

we know that the time needed by the hubs to collect readings
is proportional to the number of nodes in their neighborhoods
and Figure 3-(a) shows how this depends on the hop budget
H . As an example, we may think that time constraints force us
to set H ¤ 32 and look for minimum-energy design choices
within such a limitation. The result is reported in Figure 8
that deals only with rak-CS cases. Comparing Figure 7 with
Figure 8, one immediately gets that the H ¤ 32 constraint
results in a lower energy saving, though the gap between blue
and red tracks shows that trying to lower the overlap between
neighborhoods has non-negligible beneficial effefts.

Overall, both in the H ¤ 32 and in the time-unconstrained
cases, using values of ε corresponding to current technology,
the energy needed to send all the information to the central
collector can be cut significantly by adopting the methods
we propose, with peak reductions of almost 70% in the most
favorable cases.

This is obtained by observing that the triples pm,M,Hq
matching the performance constraint PCR� 0.95 for
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RSNRmin � 57 dB implies a different ratio between the
energy spent in long-range communication (proportional to
m) and the energy spent in local communication (proportional
to mintm,MuH). The ratio yielding the minimum total
normalized energy (8) depends on the relative cost of the local
versus long-range communication ε. This is shown in Figure 9
that considers the case of Figures 7-(a) and (d). Even though
with different trends, independently of the method one uses for
hub selection and for measurement computation, as the cost
of a single local transmission increases the number of local
transmissions involved in the minimum-energy configuration

decreases.
Finally, we propose a comparison between results obtained

by the low-γ spreading approach and that obtained by a state-
of-the-art approach based on clustering and CS compression.
In details, we consider the approach discussed in [29] that
works in a scenario very similar to one we adopt. In [29] each
sensor nodes is assigned to a single cluster and communicate
with the corresponding hub using a multi-hop protocol, while
data is locally compressed at each hub by rnd-CS. Hubs are
identified according to the following iterative algorithm.

1) M nodes are randomly elected as hubs.
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Fig. 10. Minimum energy needed to transmit to the collector all the
information needed for signal recovery with PCR ¥ 0.95 where κ � 6
and D � N for the clustering based approach in [29] and for the proposed
low-γ �rnd-CS and low-γ �rak-CS.

2) Each node is assigned to the cluster identified by the hub
that is the closest one in terms of euclidean distance.

3) For each cluster, select as a new hub the node for
which the sum of the distances with all other nodes is
minimized. In other words, new selected hubs are the
cluster centroids.

4) Repeat steps 2) and 3) until there is no change in the
hubs election.

According to [29], this algorithm always converges after very
few iterations.

The degree of freedom that is investigated is the number of
cluster M . Even though authors set M in order to minimize
the total transmission cost, in their model the data collector is
located close to the sensing area and long-range communica-
tion costs are not considered in the proposed optimization.

To allow a comparison with the method proposed here, we
adopt the clustering algorithm of [29] considering, for each
value of ε, all values of M in Table II and, for each of
them, the minimum value of m that guarantees PCR ¥ 0.95.
For each value of ε the couple pM,mq ensuring the lowest
normalized energy e is selected. Obtained values of e against
ε are shown in Figure 10 compared with those obtained using
the proposed hub spreading technique both without sensing
optimization (low-γ �rnd-CS) and when the rakeness-

based CS is adopted (low-γ �rak-CS). Here, κ � 6 and
D � N are considered as for Figure 7-(c).

One can observe that, for all considered ε values, the
hub spreading technique we propose and the adoption of the
rakeness-based CS guarantee a non negligible reduction in
terms of energy needed to transmit to the collector all the
information needed to correctly recover sensor nodes readings.

VIII. CONCLUSION

CS can be used to locally aggregate the readings of a
number of sensors into a smaller number of quantities to be
transmitted to a local collector that is able to reconstruct the
individual acquisition providing it can exploit a sparsity prior
on their ensemble.

Exploiting this and carefully administering the choice of the
local hubs, the breadth of the neighborhood from which they
collect readings, as well as the coefficients with which those
readings a linearly aggregated, one may significantly reduce
the energy needed to sample the field.

Simulations indicate that savings may be over 50% for
values of the parameters modeling nowadays local and long-
range transmission technologies.
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