New multispectral and hyperspectral instruments are going to generate very high data rates due to the increased spatial and spectral resolution. In this context, the compression is a very important part of any onboard data processing system for Earth observation and astronomical missions. More recently, lossless compression has started to be routinely used for spaceborne Earth observation satellites. The CCSDS has established a working group (WG) on Multispectral and Hyperspectral Data Compression (MHDC), which has the purpose of standardizing compression techniques to be used onboard. The WG has already standardized a lossless compression algorithm for multispectral and hyperspectral images, and has started working on a lossy compression algorithm. Under an ESA contract, aimed to investigate new techniques for Lossy multi/hyperspectral compression for very high data rate instruments (HYDRA), TSD in collaboration with Politecnico of Torino, designed an IP core for FPGA and/or ASIC implementation of a lossy compression algorithm. In addition to the IP core, TSD developed a HW platform based on the Xilinx Virtex-5 XQR5VFX130, the industry's first high performance rad-hard reconfigurable FPGA for processing-intensive for space systems. Advanced results along with details of electronic platform design will be presented in this paper.

An Hardware Implementation of a Novel Algorithm For Onboard Compression of Multispectral and Hyperspectral Images / De Nino, Maurizio; Capuano, Giuseppe; Romano, Mario; Magli, Enrico. - ELETTRONICO. - (2014), pp. 1-8. (Intervento presentato al convegno 2014 Onboard Payload Data Compression Workshop tenutosi a Venice, Italy nel Oct. 2014).

An Hardware Implementation of a Novel Algorithm For Onboard Compression of Multispectral and Hyperspectral Images

Enrico Magli
2014

Abstract

New multispectral and hyperspectral instruments are going to generate very high data rates due to the increased spatial and spectral resolution. In this context, the compression is a very important part of any onboard data processing system for Earth observation and astronomical missions. More recently, lossless compression has started to be routinely used for spaceborne Earth observation satellites. The CCSDS has established a working group (WG) on Multispectral and Hyperspectral Data Compression (MHDC), which has the purpose of standardizing compression techniques to be used onboard. The WG has already standardized a lossless compression algorithm for multispectral and hyperspectral images, and has started working on a lossy compression algorithm. Under an ESA contract, aimed to investigate new techniques for Lossy multi/hyperspectral compression for very high data rate instruments (HYDRA), TSD in collaboration with Politecnico of Torino, designed an IP core for FPGA and/or ASIC implementation of a lossy compression algorithm. In addition to the IP core, TSD developed a HW platform based on the Xilinx Virtex-5 XQR5VFX130, the industry's first high performance rad-hard reconfigurable FPGA for processing-intensive for space systems. Advanced results along with details of electronic platform design will be presented in this paper.
File in questo prodotto:
File Dimensione Formato  
74319_denino.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2728151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo