In the field of renewable-energies, a number of engineering problems are modeled as dynamical systems, and a key issue is the assessment of their stability to external disturbances. Stability analyses typically focus on the asymptotic stability, i.e., the fate of perturbations after long times from their onset. The system behavior at finite-times has attracted much less attention, although it plays a crucial role in determining the system dynamics. In this work, we focus on the response at finite-times to perturbations in run-of-river hydropower plants. These are widespread systems in the hydropower industry. We show that their response at finite-times (i) can be analytically studied by the non-modal analysis, and (ii) can be very different from the asymptotic-times response. In particular, perturbations can exhibit very relevant transient amplifications (with important technical consequences), although the system is asymptotically stable. The proposed analytical approach is general and can be applied to investigate the finite-time response of any dynamical system.

Overshoots in the water-level control of hydropower plants / Vesipa, Riccardo; Ridolfi, Luca. - In: RENEWABLE ENERGY. - ISSN 0960-1481. - STAMPA. - 131:(2019), pp. 800-810. [10.1016/j.renene.2018.07.090]

Overshoots in the water-level control of hydropower plants

Vesipa, Riccardo;Ridolfi, Luca
2019

Abstract

In the field of renewable-energies, a number of engineering problems are modeled as dynamical systems, and a key issue is the assessment of their stability to external disturbances. Stability analyses typically focus on the asymptotic stability, i.e., the fate of perturbations after long times from their onset. The system behavior at finite-times has attracted much less attention, although it plays a crucial role in determining the system dynamics. In this work, we focus on the response at finite-times to perturbations in run-of-river hydropower plants. These are widespread systems in the hydropower industry. We show that their response at finite-times (i) can be analytically studied by the non-modal analysis, and (ii) can be very different from the asymptotic-times response. In particular, perturbations can exhibit very relevant transient amplifications (with important technical consequences), although the system is asymptotically stable. The proposed analytical approach is general and can be applied to investigate the finite-time response of any dynamical system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2726281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo