Modern heterogeneous platforms require compilers capable of choosing the appropriate device for the execution of program portions. This paper presents a machine learning method designed for supporting mapping decisions through the analysis of the program source code represented in LLVM assembly language (IR) for exploiting the advantages offered by this generalised and optimised representation. To evaluate our solution, we trained an LSTM neural network on OpenCL kernels compiled in LLVM-IR and processed with our tokenizer capable of filtering less-informative tokens. We tested the network that reaches an accuracy of 85% in distinguishing the best computational unit.

Code Mapping in Heterogeneous Platforms Using Deep Learning and LLVM-IR / Barchi, Francesco; Urgese, Gianvito; Macii, Enrico; Acquaviva, Andrea. - ELETTRONICO. - (2019). (Intervento presentato al convegno In 2019 56th ACM/ESDA/IEEE Design Automation Conference (DAC) tenutosi a Las Vegas USA nel 2-6 June 2019) [10.1145/3316781.3317789].

Code Mapping in Heterogeneous Platforms Using Deep Learning and LLVM-IR

Francesco Barchi;Gianvito Urgese;Enrico Macii;Andrea Acquaviva
2019

Abstract

Modern heterogeneous platforms require compilers capable of choosing the appropriate device for the execution of program portions. This paper presents a machine learning method designed for supporting mapping decisions through the analysis of the program source code represented in LLVM assembly language (IR) for exploiting the advantages offered by this generalised and optimised representation. To evaluate our solution, we trained an LSTM neural network on OpenCL kernels compiled in LLVM-IR and processed with our tokenizer capable of filtering less-informative tokens. We tested the network that reaches an accuracy of 85% in distinguishing the best computational unit.
2019
978-1-4503-6725-7
File in questo prodotto:
File Dimensione Formato  
08806950_post_print_editor.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 684.75 kB
Formato Adobe PDF
684.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
document_post_print.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 376.18 kB
Formato Adobe PDF
376.18 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2726074