For all integers n≥k≥1, define H(n,k):=∑1/(i1⋯ik), where the sum is extended over all positive integers i1<⋯−klogpn+Ok(1) and we conjecture that there exists a positive constant c = c(p, k) such that νp(H(n,k))<−clogn for all large n. In this respect, we prove the conjecture in the affirmative for all n≤x whose base p representations start with the base p representation of k − 1, but at most 3x0.835 exceptions. We also generalize a result of Lengyel by giving a description of ν2(H(n,2)) in terms of an infinite binary sequence.
On the p-adic valuation of Stirling numbers of the first kind / Leonetti, Paolo; Sanna, Carlo. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - STAMPA. - 151:1(2017), pp. 217-231.
Titolo: | On the p-adic valuation of Stirling numbers of the first kind |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10474-016-0680-4 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
pstirling.pdf | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Leonetti-Sanna2017_Article_OnTheP-adicValuationOfStirling.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2722650