For all integers n≥k≥1, define H(n,k):=∑1/(i1⋯ik), where the sum is extended over all positive integers i1<⋯−klogpn+Ok(1) and we conjecture that there exists a positive constant c = c(p, k) such that νp(H(n,k))<−clogn for all large n. In this respect, we prove the conjecture in the affirmative for all n≤x whose base p representations start with the base p representation of k − 1, but at most 3x0.835 exceptions. We also generalize a result of Lengyel by giving a description of ν2(H(n,2)) in terms of an infinite binary sequence.

On the p-adic valuation of Stirling numbers of the first kind / Leonetti, Paolo; Sanna, Carlo. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - STAMPA. - 151:1(2017), pp. 217-231. [10.1007/s10474-016-0680-4]

On the p-adic valuation of Stirling numbers of the first kind

Sanna, Carlo
2017

Abstract

For all integers n≥k≥1, define H(n,k):=∑1/(i1⋯ik), where the sum is extended over all positive integers i1<⋯−klogpn+Ok(1) and we conjecture that there exists a positive constant c = c(p, k) such that νp(H(n,k))<−clogn for all large n. In this respect, we prove the conjecture in the affirmative for all n≤x whose base p representations start with the base p representation of k − 1, but at most 3x0.835 exceptions. We also generalize a result of Lengyel by giving a description of ν2(H(n,2)) in terms of an infinite binary sequence.
File in questo prodotto:
File Dimensione Formato  
pstirling.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 307.06 kB
Formato Adobe PDF
307.06 kB Adobe PDF Visualizza/Apri
Leonetti-Sanna2017_Article_OnTheP-adicValuationOfStirling.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 686.6 kB
Formato Adobe PDF
686.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722650