For all integers n≥k≥1, define H(n,k):=∑1/(i1⋯ik), where the sum is extended over all positive integers i1<⋯−klogpn+Ok(1) and we conjecture that there exists a positive constant c = c(p, k) such that νp(H(n,k))<−clogn for all large n. In this respect, we prove the conjecture in the affirmative for all n≤x whose base p representations start with the base p representation of k − 1, but at most 3x0.835 exceptions. We also generalize a result of Lengyel by giving a description of ν2(H(n,2)) in terms of an infinite binary sequence.
On the p-adic valuation of Stirling numbers of the first kind / Leonetti, Paolo; Sanna, Carlo. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - STAMPA. - 151:1(2017), pp. 217-231. [10.1007/s10474-016-0680-4]
On the p-adic valuation of Stirling numbers of the first kind
Sanna, Carlo
2017
Abstract
For all integers n≥k≥1, define H(n,k):=∑1/(i1⋯ik), where the sum is extended over all positive integers i1<⋯−klogpn+Ok(1) and we conjecture that there exists a positive constant c = c(p, k) such that νp(H(n,k))<−clogn for all large n. In this respect, we prove the conjecture in the affirmative for all n≤x whose base p representations start with the base p representation of k − 1, but at most 3x0.835 exceptions. We also generalize a result of Lengyel by giving a description of ν2(H(n,2)) in terms of an infinite binary sequence.File | Dimensione | Formato | |
---|---|---|---|
pstirling.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
307.06 kB
Formato
Adobe PDF
|
307.06 kB | Adobe PDF | Visualizza/Apri |
Leonetti-Sanna2017_Article_OnTheP-adicValuationOfStirling.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
686.6 kB
Formato
Adobe PDF
|
686.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2722650