IIn the past years, knowledge graphs have proven to be beneficial for recommender systems, efficiently addressing paramount issues such as new items and data sparsity. Graph embeddings algorithms have shown to be able to automatically learn high quality feature vectors from graph structures, enabling vector-based measures of node relatedness. In this paper, we show how node2vec can be used to generate item recommendations by learning knowledge graph embeddings. We apply node2vec on a knowledge graph built from the MovieLens 1M dataset and DBpedia and use the node relatedness to generate item recommendations. The results show that node2vec consistently outperforms a set of collaborative filtering baselines on an array of relevant metrics.

Knowledge Graph Embeddings with node2vec for Item Recommendation / Palumbo, Enrico; Rizzo, Giuseppe; Troncy, Raphael; Baralis, ELENA MARIA; Osella, Michele; Ferro, ENRICO GIOVANNI. - ELETTRONICO. - (2018), pp. 117-120. ((Intervento presentato al convegno Extended Semantic Web Conference 2018 [10.1007/978-3-319-98192-5_22].

Knowledge Graph Embeddings with node2vec for Item Recommendation

Enrico Palumbo;Giuseppe Rizzo;Elena Baralis;Michele Osella;Enrico Ferro
2018

Abstract

IIn the past years, knowledge graphs have proven to be beneficial for recommender systems, efficiently addressing paramount issues such as new items and data sparsity. Graph embeddings algorithms have shown to be able to automatically learn high quality feature vectors from graph structures, enabling vector-based measures of node relatedness. In this paper, we show how node2vec can be used to generate item recommendations by learning knowledge graph embeddings. We apply node2vec on a knowledge graph built from the MovieLens 1M dataset and DBpedia and use the node relatedness to generate item recommendations. The results show that node2vec consistently outperforms a set of collaborative filtering baselines on an array of relevant metrics.
978-3-319-98192-5
File in questo prodotto:
File Dimensione Formato  
Knowledge_Graph_Embeddings_with_node2vec_for_Item_Recommendation.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 250.04 kB
Formato Adobe PDF
250.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2710123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo