IIn the past years, knowledge graphs have proven to be beneficial for recommender systems, efficiently addressing paramount issues such as new items and data sparsity. Graph embeddings algorithms have shown to be able to automatically learn high quality feature vectors from graph structures, enabling vector-based measures of node relatedness. In this paper, we show how node2vec can be used to generate item recommendations by learning knowledge graph embeddings. We apply node2vec on a knowledge graph built from the MovieLens 1M dataset and DBpedia and use the node relatedness to generate item recommendations. The results show that node2vec consistently outperforms a set of collaborative filtering baselines on an array of relevant metrics.
Knowledge Graph Embeddings with node2vec for Item Recommendation / Palumbo, Enrico; Rizzo, Giuseppe; Troncy, Raphael; Baralis, ELENA MARIA; Osella, Michele; Ferro, ENRICO GIOVANNI. - ELETTRONICO. - (2018), pp. 117-120. (Intervento presentato al convegno Extended Semantic Web Conference 2018) [10.1007/978-3-319-98192-5_22].
Knowledge Graph Embeddings with node2vec for Item Recommendation
Enrico Palumbo;Giuseppe Rizzo;Elena Baralis;Michele Osella;Enrico Ferro
2018
Abstract
IIn the past years, knowledge graphs have proven to be beneficial for recommender systems, efficiently addressing paramount issues such as new items and data sparsity. Graph embeddings algorithms have shown to be able to automatically learn high quality feature vectors from graph structures, enabling vector-based measures of node relatedness. In this paper, we show how node2vec can be used to generate item recommendations by learning knowledge graph embeddings. We apply node2vec on a knowledge graph built from the MovieLens 1M dataset and DBpedia and use the node relatedness to generate item recommendations. The results show that node2vec consistently outperforms a set of collaborative filtering baselines on an array of relevant metrics.File | Dimensione | Formato | |
---|---|---|---|
Knowledge_Graph_Embeddings_with_node2vec_for_Item_Recommendation.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
250.04 kB
Formato
Adobe PDF
|
250.04 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2710123
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo