The increasing performance demands in emerging Internet of Things applications clash with the low energy budgets of end-nodes. Therefore, hardware operators able to reconfigure their computational precision at runtime are increasingly employed in these devices, to obtain good-enough results at minimal energy costs. Among the many methods proposed to implement such operators, Dynamic Voltage and Accuracy Scaling (DVAS) is particularly promising, due to its broad applicability and low overheads. However, a straight-forward application of DVAS conflicts with the optimizations performed by classic EDA algorithms, and does not yield the expected results. In this paper, we propose a novel synthesis algorithm for reconfigurable-precision circuits, that allows to integrate DVAS in a standard implementation flow. Moreover, we show how this algorithm can exploit information about the application, namely on the frequency of usage of each precision, to further reduce the total energy consumption. Applying our method to the popular LeNet neural network for digit recognition, we are able to reduce the energy due to Multiply-And-Accumulate (MAC) operations by 25%, compared to a straight-forward application of DVAS.
Application-Driven Synthesis of Energy-Efficient Reconfigurable-Precision Operators / Pagliari, Daniele Jahier; Poncino, Massimo. - ELETTRONICO. - (2018), pp. 1-5. (Intervento presentato al convegno 2018 IEEE International Symposium on Circuits and Systems (ISCAS) tenutosi a Florence, Italy nel 27-30 May 2018) [10.1109/ISCAS.2018.8351232].
Application-Driven Synthesis of Energy-Efficient Reconfigurable-Precision Operators
Pagliari, Daniele Jahier;Poncino, Massimo
2018
Abstract
The increasing performance demands in emerging Internet of Things applications clash with the low energy budgets of end-nodes. Therefore, hardware operators able to reconfigure their computational precision at runtime are increasingly employed in these devices, to obtain good-enough results at minimal energy costs. Among the many methods proposed to implement such operators, Dynamic Voltage and Accuracy Scaling (DVAS) is particularly promising, due to its broad applicability and low overheads. However, a straight-forward application of DVAS conflicts with the optimizations performed by classic EDA algorithms, and does not yield the expected results. In this paper, we propose a novel synthesis algorithm for reconfigurable-precision circuits, that allows to integrate DVAS in a standard implementation flow. Moreover, we show how this algorithm can exploit information about the application, namely on the frequency of usage of each precision, to further reduce the total energy consumption. Applying our method to the popular LeNet neural network for digit recognition, we are able to reduce the energy due to Multiply-And-Accumulate (MAC) operations by 25%, compared to a straight-forward application of DVAS.File | Dimensione | Formato | |
---|---|---|---|
PID5196887.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
209.17 kB
Formato
Adobe PDF
|
209.17 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2709741
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo