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Abstract—The increasing performance demands in emerging
Internet of Things applications clash with the low energy budgets
of end-nodes. Therefore, hardware operators able to reconfigure
their computational precision at runtime are increasingly em-
ployed in these devices, to obtain good-enough results at minimal
energy costs. Among the many methods proposed to implement
such operators, Dynamic Voltage and Accuracy Scaling (DVAS)
is particularly promising, due to its broad applicability and
low overheads. However, a straight-forward application of DVAS
conflicts with the optimizations performed by classic EDA algo-
rithms, and does not yield the expected results.

In this paper, we propose a novel synthesis algorithm for
reconfigurable-precision circuits, that allows to integrate DVAS
in a standard implementation flow. Moreover, we show how this
algorithm can exploit information about the application, namely
on the frequency of usage of each precision, to further reduce the
total energy consumption. Applying our method to the popular
LeNet neural network for digit recognition, we are able to reduce
the energy due to Multiply-And-Accumulate (MAC) operations
by 25%, compared to a straight-forward application of DVAS.

I. INTRODUCTION AND BACKGROUND

Combining energy efficiency with high performance is a
critical problem in the design of digital devices for mobile
and Internet of Things (IoT) applications. Emerging applica-
tions require end-nodes able to perform increasingly complex
tasks (recognition, classification, etc.), over long time spans
(months, years) within a single battery cycle. Fortunately,
many of these applications are error tolerant, i.e. can tolerate
a relaxation of the computational quality without a significant
impact on the final results. This is the case for tasks that have
humans as final users, e.g. multimedia, or that are based on
statistical/aggregative algorithms, e.g. machine learning [1].
For example, several works have shown that both inference
and training of deep neural networks can be performed with
low-precision fixed-point operations, whilst maintaining the
network performance very close to the nominal value (obtained
with single/double-precision floating-point) [2]–[4].

Error tolerance allows trading off computational quality
with other metrics, mainly energy efficiency, and is the en-
abler for the so-called quality-scalable design paradigm. In
recent years, this paradigm has been applied at all levels of
abstraction, from single devices to software [5], [6].

A fundamental element of a quality-scalable computational
platform is the availability of hardware data-path operators
(e.g. adders, multipliers, etc.) able to dynamically reconfigure

their precision at runtime [7]–[11]. Early works on the design
of these operators propose several architectural modifications
to support multiple “quality-modes”. One solution consists
in implementing a simplified but approximate version of the
operator, and then selectively activating some error recovery
circuitry when high quality computations are required [7], [8],
[10]. An alternative is dynamic segmentation, in which the
operator is split in sub-blocks, and signals from one block to
the next (e.g. the carry in an adder) can be selectively replaced
by simpler but inaccurate prediction circuits [9], [10].

One drawback of architectural techniques for quality-
scalable circuits is the lack of automation and generality.
Indeed, most of these methods are only applicable to one
particular adder or multiplier architecture, and require the
designer to perform manual modifications on the specification.
Moreover, several works have shown that these designs have
worse energy versus quality tradeoffs compared to classic
operators working at reduced bit-width [11], [12].

A promising approach that takes these considerations
into account is Dynamic Voltage and Accuracy Scaling
(DVAS) [11]. In DVAS, multiple quality-modes are obtained
simply disabling (i.e. zeroing) some of the input Least Sig-
nificant Bits (LSBs). This provides a dynamic power saving,
thanks to the reduction in circuit activity. Moreover, decreasing
the bit-width can also reduce the operator delay, since in theory
the critical paths in a data-path circuit go from the input LSBs
to the output MSBs. This additional slack can be leveraged
for supply voltage scaling, for further dynamic and leakage
savings. DVAFS [4] extends this concept further, combining
it with frequency scaling and subword-parallel operation.

A straight-forward application of DVAS, however, conflicts
with the optimizations performed in a standard EDA flow
for ASICs [13]. In fact, EDA tools optimize critical paths
in the circuit for performance, whereas less critical paths are
exploited for area and power reduction [14]. To this end,
gates in non-critical paths are mapped to standard cells with
small widths and high threshold voltages, hence slower but
with smaller dynamic and static power consumption. This
causes an increase in the delays of short paths, which become
comparable to critical ones. Eventually, after physical design,
the circuit is likely to have a very skewed distribution of timing
slacks, known as the wall-of-slack (WOS) [7]. An example of
WOS is shown in Figure 1.
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Fig. 1: Endpoint slack distribution for a 16x16-bit MAC with
44-bit accumulator, implemented in 28nm FDSOI technology,
at fclk = 1.25 GHz, VDD = 0.95 V. The graph includes all
paths that cross combinational logic.

Due to the WOS, the previously mentioned assumption on
paths delays is no longer valid, and even at very low bit-widths,
voltage scaling can seldom be applied in DVAS without
incurring timing violations. The authors of [11] do mention
this problem, and propose to solve it through modifications
in the EDA flow which, however, they do not describe in
the paper. One low-overhead solution is provided in [13], but
this method depends on the availability of technology-specific
knobs, namely the possibility dynamically tuning the threshold
voltage via back-biasing.

In this paper, we propose the first algorithm for the synthesis
of reconfigurable-precision circuits based on DVAS, that can
be fully integrated with standard EDA tools. The algorithm
identifies the optimal supply voltage for each target bit-width,
and constrains the synthesis process accordingly, preventing
the formation of the WOS. Throughout this process, infor-
mation on the target application, obtained through off-line
characterizations, can be leveraged to drive the optimization.
Thus, our method is particularly suited for application-specific
hardware accelerators. To show the effectiveness of our so-
lution, we apply it to a Multiply-And-Accumulate (MAC)
operator, which is the key data-path component in accelerators
for artificial neural networks [4]. On this benchmark, we
obtain a total energy saving > 25% compared to a standard
implementation of DVAS.

II. APPLICATION-DRIVEN SYNTHESIS ALGORITHM

A. Multi-scenario optimization in DVAS-based circuits

All state-of-the-art commercial synthesis and place and
route (P&R) tools support multi-scenario optimization [15]. In
this procedure, the tool is instructed to simultaneously consider
multiple corners (i.e. process, supply voltage and temperature
or PVT points), each associated with a corresponding operat-
ing mode (i.e. a set of constraints), during optimization.

In a DVAS-based circuit, this functionality can be leveraged
to ensure that the circuit does not have timing violations at the
desired VDD, for each considered bit-width mode. To this end,
a separate scenario for each mode must be created, setting the
desired VDD as part of the corresponding PVT corner.

Then, case analysis features of the tool must be used,
to mimic the effect of zeroing LSBs. In particular, constant
logic-0s must be imposed on disabled inputs, so that the tool
can propagate this constraint to the circuit internal signals.
Paths that have zeros as inputs are marked as false, and
the tool does ignore them during the optimization of the
corresponding scenario. Notice that the tool will ignore false
paths when checking timing compliance and power consump-
tion in reduced-precision scenarios, but will not eliminate the
corresponding logic, as the same paths are not false in the
maximum-precision scenario.

Providing the tool with these scenarios will force it to
concurrently ensure timing compliance in all VDD and bit-
width combinations. Thus, the design will be able to operate
at reduced VDD when low bit-widths are used, consuming less
power, thanks to a more graceful-distribution of timing paths.

The drawback of this solution is an increase in area oc-
cupation and power consumption at maximum precision. In
fact, to allow lower VDD operation, gates belonging to true
paths (i.e. not disabled) in low bit-width modes will be upsized
and/or mapped to lower threshold voltage devices compared
to a standard implementation of the same circuit. Fortunately,
in many applications, maximum precision is only seldom
required [2]–[4], hence this solution has the potential to be
advantageous in terms of total energy.

B. Greedy synthesis algorithm

The methodology described in Section II-A assumes that
the best VDD value for each bit-width mode is known a priori.
In practice, finding this value is not trivial. In this work, we
propose to find an appropriate VDD for each bit-width using
the greedy incremental synthesis algorithm shown in Figure 2.

1: procedure GREEDY INCREMENTAL SYNTHESIS
2: Vstart = current supply voltage, initialized to nominal VDD

3: s0 = nominal scenario [Vstart, bmax]
4: S = list of scenarios, initialized to s0
5: C = nominal circuit netlist, synthesized in scenario s0
6: for all reduced bit-widths b (in decreasing order) do
7: snew = [Vstart, b] (same VDD as previous scenario)
8: Pnew = weighted power of C in scenarios S + snew
9: Vnew = Vstart

10: do
11: sref = snew, Pref = Pnew, Vref = Vnew
12: Vnew = decrease Vnew
13: snew = [Vnew, b]
14: Cnew = incr. synthesis of C in scenarios S + snew
15: Ts = worst slack of Cnew in scenarios S + snew
16: Pnew = weighted power of Cnew in scenarios S + snew
17: while Vnew > Vmin and Ts ≥ 0 and Pnew < Pref
18: S = S + sref
19: Vstart = Vref, C = Cnew
20: end for
21: end procedure

Fig. 2: Proposed greedy incremental synthesis algorithm.

This procedure takes as input a gate-level netlist of the
target circuit, synthesized in nominal conditions, i.e. maximum
VDD (Vstart) and bit-width (bmax). Synthesis constraints (clock



frequency, boundary conditions, etc.) are also received as
inputs, as well as the set of reduced bit-width modes to
consider during the process, and the available VDDs. In the
pseudo-code, the + symbol used with scenarios (lines 8, 14,
15, 16) corresponds to the list concatenation operation.

The core of the algorithm spans the available set of supply
voltages, starting from the nominal value and progressively
decreasing it. While doing so, it adds one bit-width mode at
a time to the considered set, in decreasing order.

For each new bit-width, the first step (line 8) is an assess-
ment of the power consumption of the circuit when the new
mode uses the same supply voltage as the previous one (i.e.
the only difference between the modes is in the number of
zeroed LSBs). This power estimation, as well as the one in
line 16, considers all bit-width modes together, as detailed
in Section II-C. Then, VDD is decreased (line 12), and an
incremental synthesis (line 14) is performed on the circuit, so
that the tool can try to enforce timing compliance at a lower
VDD for the same bit-width. During the re-synthesis phase,
the tool also accounts for previous bit-widths, using the multi-
scenario functionality described in Section II-A. In some cases
(i.e. when VDD is too low), the tool can fail to resolve timing
violations. Therefore, the resulting netlist undergoes a Static
Timing Analysis (STA) in line 15, where the worst setup and
hold slacks in all bit-width modes are evaluated. Then, the
power of the modified netlist is evaluated in line 16.

The progressive scaling of VDD is continued until it results
in a reduction of total power, and the tool is able to avoid
timing violations. The lowest VDD that satisfies these two
conditions is selected as final supply voltage for the considered
bit-width, and the corresponding scenario is saved (line 18).
Then, a new precision mode is added, and the procedure is
repeated starting from the current VDD, i.e. Vstart.

The proposed algorithm requires to re-synthesize the op-
erator several times. Thus, we perform this optimization at
gate-level, rather than after P&R. Although the latter solution
would yield more accurate results, it would also require a
longer execution time. Moreover, as long as power estimations
after synthesis and P&R are correlated [15] (although exact
values might differ), it makes sense to select the appropriate
VDDs post-synthesis, and then enforce them during P&R. In
this way, a single (multi-scenario) P&R is performed, using
the previously selected VDD for each bit-width.

C. Application-driven power weighting

A key feature of the algorithm in Figure 2 is the way in
which the total power consumption of the operator is assessed.
Specifically, as reported in the figure (lines 8 and 16), we
consider a weighted contribution from each scenario, that is:

Ptot =
∑
i

wiPi (1)

where Pi is the power in each bit-width mode. Pi depends
on the VDD applied to the circuit in that mode, and is
affected by the re-synthesis phase, because of the possible

gates resizing/remapping performed by the tool when further
scenarios are added.

Using wi = 1 for all i, would give the same importance
to the power consumption in all modes. However, our main
concern is energy efficiency, which also depends on the usage
frequency of each mode. Therefore, we propose to select
weights wi in a way that lets our algorithm minimize a “proxy”
of the total energy consumption, leveraging information about
the target application. In practice, this can be done assigning
to wi a value proportional to the probability that a given
operation requires mode i, which can be obtain through an
offline characterization of the application.

Notice that the algorithm of Figure 2 is greedy, in that it
stops decreasing VDD at the first minimum of Equation (1),
although this might not be the global best. For example, if the
nominal VDD and bit-width for a circuit are 0.9V and 16-bit
respectively, using 0.8V for the 8-bit mode might cause a slight
increase in the total weighted power, due to the impact of gates
resizing on the consumption at 16-bit. However, decreasing
the 8-bit supply voltage further, e.g. to 0.7V, might reduce the
power consumption at that precision enough to improve the
value of Equation (1). The impact of this occurrence depends
on the values of weights wi, on the topology of the considered
circuit, and on synthesis constraints (especially fclk).

The advantage of the greedy approach is that it requires
a smaller number of re-synthesis. Alternatively, an exhaustive
search could also be performed, considering all possible supply
voltages (among those smaller than the ones used at higher bit-
widths). This would guarantee optimality at the cost of longer
execution time, and it would still be feasible if the number of
bit-width modes and VDDs is not too large. In practice, in our
test case, the situation described above never verifies, and the
greedy and exhaustive solutions coincide.

III. TESTCASE RESULTS

We demonstrate the effectiveness of the methodology de-
scribed in Section II on a 16x16-bit Multiply-And-Accumulate
(MAC) operator, with a 44-bit accumulator. We described the
architecture of the MAC in VHDL, and synthesized it targeting
a 28nm FDSOI technology library from STMicroelectronics.
The clock frequency and nominal supply voltage were set
to fclk = 1.25GHz and VDD = 0.95V respectively. In
the following experiments, we considered supply voltages
from 0.95V to 0.60V in steps of 0.05V . For logic synthe-
sis (both the full run to get the nominal circuit, and the
incremental re-synthesis of our algorithm) we used Synopsys
Design Compiler L-2016.03. P&R was executed with Cadence
Innovus 16.1, while STA and power analyses were performed
in Synopsys PrimeTime L-2016.06. The algorithm of Figure 2
was implemented in Python 3.5, and internally makes use of
both Design Compiler and PrimeTime.

In the following, we assumed that the MAC operator is part
of an accelerator for the inference (i.e. classification) phase
of the well-known LeNet-5 neural network, for handwritten
digit recognition [16]. We selected this benchmark due to



Bit-Width Number of MACs

16 0.01 · 106

8 1.6 · 106

4 0.3 · 106

TABLE I: Number of MAC operations performed at each bit-
width during the classification of one digit in LeNet-5 [16]

its relevance, and the availability of previous bit-width char-
acterizations. However, notice that our method is applicable
to any other domain for which the number of operations
performed at different bit-widths can be estimated through
offline characterizations.

MAC operations constitute the bulk of the computations
performed during neural networks inference. Many researchers
have shown that these operations can be done in fixed-point,
with relatively low bit-widths, without a significant impact on
the classification accuracy compared to floating point base-
lines [2]–[4]. In particular, the authors of [4] have shown that
better accuracy is obtained if a different bit-width is used for
each layer of the network. In our experiments, we considered
the same bit-widths derived in [4] for the two convolutional
layers of LeNet-5. Moreover, we assumed that 16-bits are used
for Fully Connected (FC) layers, in accordance to [3]. With
these assumptions, the number of MAC operations performed
at each bit-width for the classification of one digit using
LeNet-5 is reported in Table I.

We considered three different DVAS-based MAC operators,
each supporting 4-bit, 8-bit and 16-bit modes. A first Classic
version, used as baseline for comparison, was obtained with-
out synthesis optimizations (i.e. applying DVAS to a circuit
implemented with a standard flow). Additionally, we applied
the algorithm of Figure 2 twice, first setting all weights wi to
1 (Uniform version), and then setting weights proportional to
the usage probability of each bit-width mode, i.e. w16 = 0.01,
w8 = 1.6, w4 = 0.3 (Weighted version).

A. Power, area and energy comparison

Table II shows the supply voltages used in reduced bit-width
modes by the three circuits, as well as the area overheads
with respect to the Classic version. Figure 3 shows the post-
P&R total power consumption (including leakage and dynamic
contributions) obtained by the different MACs at each bit-
width. In the Classic MAC, scaling the VDD to 0.90V causes

MAC Version 8-bit VDD [V] 4-bit VDD [V] Area Ovr. [%]

Classic 0.95 0.95 -
Uniform 0.90 0.90 9
Weighted 0.75 0.70 16

TABLE II: Reduced bit-width VDD and area overhead (nor-
malized to the Classic version) of the three MAC versions.

timing violations at both 8-bit and 4-bit precision, due to
the WOS. In the Uniform version, conversely, thanks to the
multi-scenario optimization, the synthesis tool enforced timing
compliance at 0.90V for 4 and 8 bit modes. The VDD was
not reduced further because of the high power overheads
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Fig. 3: Power consumption in different bit-width modes.

that this would cause at 16-bit. However, this intermediate
solution does not take the statistics about application data into
account. In particular, it ignores that maximum-precision is
only required in about 0.005% of the MAC operations.

Conversely, in the Weighted case, our algorithm selects a
much more aggressively scaled VDD for both 8 and 4-bit, since
these two modes are much more relevant than 16-bit in LeNet
inference. This causes an area overhead of 16% compared to
the Classic version, but allows significant power savings at
reduced bit-widths (27% at 8-bit, and 31% at 4-bit).

The global advantage of the Weighted solution is shown
in Figure 4, which reports the total energy consumption due
to MAC operations for classifying one digit in LeNet-5, if
the three MAC versions are used. Results are normalized
to the Classic implementation. While the Uniform version
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Fig. 4: Energy due to MAC operations for classifying one
frame in LeNet-5.
only consumes ≈ 5% less energy compared to a standard
design, the Weighted solution reduces consumption by ≈ 27%.
Importantly, this result also accounts for the additional leakage
energy of the Weighted version, caused by the larger area.

IV. CONCLUSIONS

We have proposed a new synthesis algorithm for data-path
circuits that can operate in multiple precision modes, based
on the principles of DVAS. This algorithm is fully automated,
and leverages industrial EDA tools for synthesis and place and
route. Moreover, we have shown that the effectiveness of our
method improves if characterizations of the target application
are available.

When tested on a MAC operator, used in the acceleration
of neural networks inference, our solution reduces the total
energy consumption of 27% compared to a standard DVAS
implementation.
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