This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge’s procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech.2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number–Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.

Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space / Fraternale, Federico; Domenicale, Loris; Staffilani, Gigliola; Tordella, Daniela. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - STAMPA. - 97:063102(2018), pp. 1-16. [10.1103/PhysRevE.97.063102]

Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space

Federico Fraternale;Loris Domenicale;Daniela Tordella
2018

Abstract

This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge’s procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech.2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number–Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.
File in questo prodotto:
File Dimensione Formato  
PhysRevE.97.063102.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2709534
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo