This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge’s procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech.2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number–Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.
Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space / Fraternale, Federico; Domenicale, Loris; Staffilani, Gigliola; Tordella, Daniela. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - STAMPA. - 97:063102(2018), pp. 1-16. [10.1103/PhysRevE.97.063102]
Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space
Federico Fraternale;Loris Domenicale;Daniela Tordella
2018
Abstract
This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge’s procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech.2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number–Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.File | Dimensione | Formato | |
---|---|---|---|
PhysRevE.97.063102.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.78 MB
Formato
Adobe PDF
|
3.78 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2709534
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo