In recent years, the Compressed Sensing (CS) framework has been shown to be an effective private key cryptosystem. If infinite precision is available, then it has been shown that spherical secrecy can be achieved. However, despite its theoretically proven secrecy properties, the only practically feasible implementations involve the use of Bernoulli sensing matrices. In this work, we show that different distributions employing a much larger finite alphabet can be considered. More in detail, we consider the use of quantized Gaussian sensing matrices and experimentally show that, besides being suitable for practical implementation, they can achieve higher secrecy with respect to Bernoulli sensing matrices. Furthermore, we show that this approach can be used to tune the secrecy of the CS cryptosystems based on the available machine precision.
On the secrecy of compressive cryptosystems under finite-precision representation of sensing matrices / Testa, Matteo; Bianchi, Tiziano; Magli, Enrico. - ELETTRONICO. - (2018), pp. 1-4. (Intervento presentato al convegno 2018 IEEE International Symposium on Circuits and Systems (ISCAS) tenutosi a Florence, Italy nel 27-30 May 2018) [10.1109/ISCAS.2018.8351443].
On the secrecy of compressive cryptosystems under finite-precision representation of sensing matrices
Testa, Matteo;Bianchi, Tiziano;Magli, Enrico
2018
Abstract
In recent years, the Compressed Sensing (CS) framework has been shown to be an effective private key cryptosystem. If infinite precision is available, then it has been shown that spherical secrecy can be achieved. However, despite its theoretically proven secrecy properties, the only practically feasible implementations involve the use of Bernoulli sensing matrices. In this work, we show that different distributions employing a much larger finite alphabet can be considered. More in detail, we consider the use of quantized Gaussian sensing matrices and experimentally show that, besides being suitable for practical implementation, they can achieve higher secrecy with respect to Bernoulli sensing matrices. Furthermore, we show that this approach can be used to tune the secrecy of the CS cryptosystems based on the available machine precision.File | Dimensione | Formato | |
---|---|---|---|
testa_ISCAS18_OA.pdf
accesso aperto
Descrizione: articolo versione autore
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
229.59 kB
Formato
Adobe PDF
|
229.59 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2709510
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo