This paper extends the well-established macromod- eling flows based on rational fitting and passivity enforcement to the bivariate case, where the model response depends on frequency and on some additional design parameter. We propose a black-box model identification algorithm that is able to guarantee uniform stability and passivity throughout the parameter range. The resulting models, which can be cast as parameterized SPICE subnetworks, may be used to construct parameterized component libraries for design optimization, what-if analyses and fast parametric sweeps in frequency or time domain.

Bivariate macromodeling with guaranteed uniform stability and passivity / Grivet-Talocia, Stefano. - ELETTRONICO. - (2018), pp. 1-3. (Intervento presentato al convegno Electrical Performance of Electronic Packaging and Systems (EPEPS), 2017 IEEE 26th Conference on tenutosi a San Jose (CA), USA nel 15-18 Oct. 2017) [10.1109/EPEPS.2017.8329710].

Bivariate macromodeling with guaranteed uniform stability and passivity

Grivet-Talocia, Stefano
2018

Abstract

This paper extends the well-established macromod- eling flows based on rational fitting and passivity enforcement to the bivariate case, where the model response depends on frequency and on some additional design parameter. We propose a black-box model identification algorithm that is able to guarantee uniform stability and passivity throughout the parameter range. The resulting models, which can be cast as parameterized SPICE subnetworks, may be used to construct parameterized component libraries for design optimization, what-if analyses and fast parametric sweeps in frequency or time domain.
2018
978-1-5386-3631-2
File in questo prodotto:
File Dimensione Formato  
cnf-2017-epeps-bivariate-passive.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 229.71 kB
Formato Adobe PDF
229.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2705681
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo